
AD-A254 726 /

NAVSWC TR 91 -388D-24 2

REENGINEERING USING A DATA ABSTRACTION
BASED SPECIFICATION LANGUAGE

BY RANDALL E. DURAN

UNDERWATER SYSTEMS DEPARTMENT

27 SEPTEMBER 1991 DTI
261199E

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER
Dahlgm,. v'rinia 22446-5000 *Sller Spring, Maryland 20903-S000

92-23931

92 8 28 Q34 3_ _ __4_

NAVSWC TR 91-388

REENGINEERING USING A DATA ABSTRACTION
BASED SPECIFICATION LANGUAGE

BY RANDALL E. DURAN
UNDERWATER SYSTEMS DEPARTMENT

27 SEPTEMBER 1991

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER
Dahigren. Virginia 22448-5000 0 Silver Spring. Maryland 20903-5000

NAVSWC TR 91-388

FOREWORD

This report describes how a reengineering methodology was developed and
applied to convert part of a system implemented in CMS-2 to a new C
implementation. In particular, this methodology used Larch specification as an
intermediate design representation that was obtained through reverse engineering.
The benefits of using this methodology and ways of improving it, primarily through
automation, are suggested.

The work was performed at the Naval Surface Warfare Center and was
sponsored by the Office of Naval Technology (Code ONT-22) and the Independent
Exploratory Development Program. It was part of the Reverse Engineering
Prototype Task, within the Systems Reengineering Technology Project of the
Engineering of Complex Systems Block Program. This work is also being published
as a master's thesis at the Massachusetts Institute of Technology (MIT).

The author would like to thank Professor John Guttag for his supervision, his
help with Larch, and his comments and suggestions. He would also like to thank
Phi Hwang, Adrien Meskin, and Terri Dumoulin for their comments and suggestions
on this report; Ali Farsaie and Tamra Moore for their assistance; and Doug Scott for
his help with the Antisubmarine Warfare Control System (ASWCS) MK 116 MOD 7.

Approved by:

C. A. KALIVRETENOS, Deputy Head
Underwater Systems Department

Aoo___ sj0o, --
NTIS,~&
DTIC TAB 0

By __._"Uvatlant lOcy 1o3e

mIMC qTIAnTJT tN8PWCrD 3 trbt1 _

tITst Sp•oia1
iliiab t Codes

NAVSWC TR 91-388

ABSTRACT

This report describes how a reengineering methodology was developed
and applied to convert part of a system implemented in CMS-2 to a new C
implementation. In particular, this methodology used Larch specifications as an
intermediate design representation that was obtained through reverse engineering.
The benefits of using this methodology and ways of improving it, primarily through
automation, are suggested.

iii/iv

NAVSWC TR 91-388

CONTENTS

Chanter Page

I INTRODUCTION .. 1

2 BACKGROUND OF SYSTEMS REENGINEERING 3
D EFIN ITION S .. 3
REASONS FOR BENEFITS OF REENGINEERING 3
REENGINEERING STRATEGIES 5
RESEARCH APPROACH ... 7

3 COMPONENTS OF THE REENGINEERING PROJECT 9
THE SOURCE LANGUAGE: CMS-2 9
THE INTERMEDIATE REPRESENTATION: LARCH SPECIFICATIONS .. 10
THE TARGET LANGUAGE: THE C PROGRAMMING LANGUAGE 11
THE TEST CASE: THE ASWCS MK 116 MOD 7 12

4 REVERSE ENGINEERING .. 15
INTRODUCTION .. 15
R EN A M IN G ... 17
MODULAR DECOMPOSITION ... 19
DATA ANALYSIS ... 22
DATA RECOMPOSITION .. 26
PROCEDURAL SPECIFICATION 28
DEPENDENCY ANALYSIS AND SEQUENTIAL SPECIFICATION 29
GENERATION OF LCL SPECIFICATIONS 31

5 FORWARD ENGINEERING .. 35
IMPLEMENTATION OF THE DATA SPECIFICATIONS 35
IMPLEMENTATION OF THE PROCEDURAL SPECIFICATIONS 40
AUTOMATING THE FORWARD ENGINEERING PROCESS 41

6 ANALYSIS OF RESULTS .. 43
INTERESTING EXAMPLES .. 43
EVALUATION OF RESULTS ... 46

V

NAVSWC TR 91-388

CONTENTS (CONT.)

Chapter Page

7 CON CLUSION .. 49
ACCOMPLISHMENTS ... 49
LESSONS LEARNED .. 49
FUTURE DIRECTIONS .. 50
RESEARCH BIASES ... 51

REFERENCES .. 53

BIBLOGRAPH Y ... 55

Appendix Page

A THE RCINSUCC PROCEDURE ... A-I

B THE DATA-OPERATOR MAP FOR THE COUNTER ABSTRACTION B-I

vi

NAVSWC TR 91-388

ILLUSTRATIONS

Figure Page

1 GENERALIZED REENGINEERING DEFINITIONS 4
2 SYSTEM REENGINEERING DEFINITIONS 4
3 SOFTWARE REENGINEERING DEFINITIONS 5
4 TWO APPROACHES TO TRANSITIONING SOFTWARE FROM

ONE PROGRAMMING LANGUAGE TO ANOTHER 6
5 TRANSFORMATION OF THE PROCEDURAL REPRESENTATION 16
6 AN EXAMPLE OF DATA RENAMING 18
7 AN EXAMPLE OF DATA REEXPRESSION 18
8 THE NEW STRUCTURE OF RCINSUCC AFTER RENAMING

AND MODULAR DECOMPOSITION 20
9 THE PROCEDURAL REPRESENTATION FOR THE TOP LEVEL MODULE

REPRESENTING RCINSUCC AFTER RENAMING AND
DECOM POSITION ... 21

10 DECLARATION AND REFERENCES TO THE VARIABLES
QCNTI AND QCNT2 ... 23

11 INFORMAL SPECIFICATION OF THE COUNTER DATA ABSTRACTION 23
12 ABSTRACTION OF FUNCTIONAL INFORMATION INTO A

DATA ABSTRACTION OPERATOR 24
13 INTEGRATION OF DATA ANALYSIS INFORMATION 25
14 LSL SPECIFICATION FOR A COUNTER 27
15 AN EXAMPLE OF HOW ITERATION WAS RESPECIFIED 28
16 IMPLICIT SEQUENTIAL DEPENDENCY RELATIONSHIPS IN CMS-2 30
17 SEQUENTIAL SPECIFICATION IN THE PROCEDURAL

REPRESENTATION ... 30
18 TIlE LCL SPECIFICATION FOR SUCCESSORENTRANCE CONTROL ... 31
19 THE LCL STUB FOR THE TASKSCHEDULINGDATA LSL TRAIT 32
20 THE LSL SPECIFICATION FOR A FLAG 36
21 THE LSL SPECIFICATION FORTHE TASKINITIALIZATION

RECORD DATA ABSTRACTION 36
22 THE LCL SPECIFICATION FOR THE TASK INITIALIZATION DATA

ABSTRACTION .. 38
23 THE IMPLEMENTATION OF TASKINITIALIZATION _RECORD 39
24 THlE C IMPLEMENTATION OF SUCCESSORENTRANCE CONTROL 40
25 THE CMS-2 DECLARATION OF THE MZTSKINI DATA TABLE 43
26 THE DATA ABSTRACTIONS THAT REPLACED MZTSKINI 44
27 ELIMINATION OF IMPLEMENTATION DEPENDENT ASPECTS 45
28 A CMS-2 COMPILER SWITCH AND HOW IT WAS RESPECIFIED 46

vii

NAVSWC TR 91-388

CHAPTER 1

INTRODUCTION

Systems reengineering is the practice of taking an existing system and
reimplementing it in a new and more advantageous form. This technique avoids the
expense of completely redeveloping system software by allowing it to be transitioned
to a more modern and maintainable language using its existing design. This process
may also offer the benefits of extending the life of the system, reducing hardware
dependency, improving maintainability, and generating new and more accurate
documentation.

Little formal research has been performed on the reengineering of software
from an existing system into a different programming language. The research to
date has focused on redocumentationl,2 and restructuring. 3,4 While these efforts
have been useful, they have not fully addressed the problem of language-to-language
software reengineering.

It was the intent of this research to experiment with a particular reengineering
process and methodology and determine its effectiveness when used on source code
from an existing system. Although the scope of this project only allowed a fragment
of a software system to be reengineered, this research did provide a foundation for
understanding the process, results, and challenges of reengineering. The intent was
that future research would extend from this research, so as to create a more complete
characterization of the reengineering process.

The research focused on the reengineering of a 299 line CMS-2 procedure and
the data objects that it used to a C implementation, using Larch specifications as an
intermediate representation. The unclassified CMS-2 source code was taken from an
existing U.S. Navy Antisubmarine Warfare Control System (ASWCS) MK 116
MOD 7. From this work, a reengineering methodology was developed, results were
obtained from an experimental application of this methodology, and information was
gained regarding possible automation of the reengineering process.

The rest of this report is organized as follows: Chapter 2 defines relevant terms
and provides background information about the reengineering project; Chapter 3
provides specific information about the languages and systems used in the project;
Chapter 4 describes the part of the reengineering methodology that addresses reverse
engineering; Chapter 5 describes the forward engineering process; Chapter 6
presents interesting examples encountered during reengineering and analyzes the
project's results; Chapter 7 provides the conclusions and suggests areas for future
study.

1/2

NAVSWC TR 91-388

CHAPTER 2

BACKGROUND OF SYSTEMS REENGINEERING

Systems reengineering is a research area that integrates maintenance and new
development. The large number of systems in the maintenance phase of their life
cycle along with the advances in development techniques has made it profitable to
focus on improving current systems using new development methods. The
upgrading, or traditional maintenance, of existing systems is often costly because of
problems with its implementation and prior maintenance practices. Often, the size
and complexity of existing systems makes it difficult to redevelop software to help
reduce maintenance costs. System reengineering, using an intermediate
representation, may offer a cost effective alternative to redevelopment to attain
improved system maintenance. In particular, the use of formal methods as an
intermediate representation may be helpful by providing accuracy and precision.

DEFINITIONS

This section defines the terminology used throughout the rest of this report.
Most of the definitions are commonly accepted, but some definitions have been
extended so as to convey a meaning more relevant to this research. They move from
general reengineering definitions to definitions more specific to this project.

Figure 1 provides the generalized definitions for several reengineering related
terms, which are based on those of Chikofsky and Cross.5 These definitions could
apply to any number of types of systems including hardware, software,
organizational, etc. The definitions shown in Figure 2 apply to reengineering at the
system level. 6 They address the integrated components of systems and do not view a
system as a single unified entity. Figure 3 provides definitions that are specific to
the reengineering of software systems. These definitions focus on the components of a
software system and the specifics of the software reengineering process.

Software reengineering, as defined, will be simply referred to as reengineering
henceforth. Thus, the term reengineering will refer to: (1) the transformation from
one programming language to another, (2) the use of an intermediate design
representation, (3) the reverse engineering process, and (4) the forward engineering
process. The latter two points are inherited from the generalized definition of
reengineering. These four points are important for characterizing the type of
reengineering addressed in this report.

REASONS FOR AND BENEFITS OF REENGINEERING

Software reengineering is an important issue because of the large number of
existing systems that are implemented in older programming languages. These

3

NAVSWC TR 91-388

Design Representation-The implementation-independent, abstract representation of the design
of a system.

Forward Engineering-The process of moving from high-level abstractions and logical,
implementation-independent designs to the physical implementation of a system.

Redocumentation-The creation or revision of a semantically equivalent representation of a
system intended for a human audience.

Reverse Engineering-The process of analyzing a subject system to identify the system
components and their interrelationships, and to create representations of the system in another
form or at a higher level of abstraction.

Reengineering-The examination and alteration of a subject system to reconstitute it in a new
form and the subsequent implementation of the new form. This includes some form of reverse
engineering (to achieve a more abstract description) followed by some form of forward engineering
or restructuring.

Reimplementation-The process of forward engineering a design representation which was
obtained through reverse engineering.

Restructuring-The transformation from one form of system representation to another at the
same relative abstraction level while preserving the subject system's functional requirements.

FIGURE 1. GENERALIZED REENGINEERING DEFINITIONS

Environmental Characteristics-The external properties which affect the design of an
embedded system including human-machine interfaces and the organizational structure in which
the embedded system is a component.

Nonfunctional Requirements--The real-time, time critical, reliability, fault tolerance,
maintainability, and security issues which characterize systems.

Systems Reengineering-Transformation of any of the components in a system including the
hardware, software, and environmental characteristics which produces a new implementation of
the system.

FIGURE 2. SYSTEM REENGINEERING DEFINITIONS

4

NAVSWC TR 91-388

Software Reengineering-The reengineering of an existing software system to new target
language using an intermediate representation to capture the software design information.

Source Language-The programming language that implemented an existing software system.

Target Language-The programming language that is used to represent a forward engineered
software implementation.

Translation-The automated conversion of software written in one programming language to
another programming language using direct syntactic substitution.

FIGURE 3. SOFTWARE REENGINEERING DEFINITIONS

systems have severe maintenance problems because of a lack of portability; poor
documentation; and poor, prior maintenance practices. It is also difficult to hire new
programmers and maintainers that are familiar with some older programming
languages.

Through the exclusion of implementation specific information in the design
abstraction process, hardware dependencies in reengineered software may be
reduced. The removal of these aspects improves portability between hardware
platforms, allowing more flexible use of new hardware technology. Removal of
hardware dependencies also allows the maintainer who is unfamiliar with a system's
hardware to understand the system's functionality more easily.

The reengineering process extracts software's design into a representation that
can be used as documentation for the old system as well as the new. Since the
documentation is derived directly from the software, it is likely to be both consistent
with the software and up to date. This method of generating new documentation can
improve understanding of the system by providing information that was previously
undocumented (i.e., changes that have been made, the relationship between different
modules, and system complexity statistics). This information can be useful for
determining how future maintenance should be approached.

The ability to use new maintenance environments can also be gained through
reengineering. By porting software to new languages and systems, new maintenance
tools, which could not be used with the previous language or system, can often be
used. Such tools can include new case, automated documentation, and software
analysis tools.

REENGINEERING STRATEGIES

Two approaches can be used to transition software from one programming
language to another: (1) the use of direct translation from one language to another
and (2) the use of intermediate forms to represent the software in the transition
between the two languages (see Figure 4). These two approaches will be referred to

5

NAVSWC TR 91-388

as the translation and restructuring approach and the intermediate representation
approach, respectively. The direct translation approach is often enhanced by
automated restructuring of the new source code so that it can take advantage of the
target language's characteristics.

Direct translation:

LangageLanguage

Use of intermediate representations:

Source Intermed. Intermed. Target
Language Rep. 1 Rep.N Language

FIGURE 4. TWO APPROACHES TO TRANSITIONING SOFTWARE FROM
ONE PROGRAMMING LANGUAGE TO ANOTHER

While restructuring 3,4 is a key point in the first approach, it is important to
note that restructuring is a process that can be applied whether or not an
intermediate representation is used. Also, not only can the reimplemented source
code be restructured, the original source can be restructured prior to any
transitioning.

The Translation and Restructuring Approach

The focus of the translation and restructuring approach 7 is on providing
effective translation and useful restructuring. One advantage that this approach
offers is that the translation process can be simple if similar languages are used.
Another advantage of this approach is that much of the focus is on using and
developing restructuring and repackaging tools, which can also be applied to
traditional software development practices.

Two disadvantages of this approach are that it does not necessarily improve
understanding of the system and inefficient implementations in the original code
may persist in the new implementation. These disadvantages occur because reverse
engineering is not employed in the transitioning process. Because the restructuring
is automatic, and is based on the new source code, no reverse engineering is
performed, and thus a design abstraction is not obtained. This, in turn, leads to no
improvement in system understanding. Similarly, because there is no functional
abstraction, many of the previous implementation decision- will migrate to the new
implementation.

6

NAVSWC TR 91-388

The Intermediate Representation Approach

The intermediate representation a pproach is what this report refers to more
specifically as software reengineering.8 ,9 This approach focuses on using a series of
transformations, which result in one or more intermediate forms. The emphasis is on
applying transformations that will improve maintainability and result in improved
implementations.

The advantages of the intermediate representation approach are that it provides
design level documentation for the system, allows restructuring at the design level,
and abstracts away from implementation dependent issues. The use of intermediate
representations provides an automatic form of documentation for both the original
system and the new implementation. Likewise, these intermediate forms provide a
framework for restructuring at a more abstract level than that of either the original
or the new implementation.

The disadvantages of this approach are that the process can be more complex
and may not be as easily automated as the translation and restructuring approach.
The main difficulty is that abstraction away from the source code into intermediate
representations requires complex analysis, which cannot be fully automated.

RESEARCH APPROACH

The approach taken to this project was to define a high level reengineering
process, use it to experimentally reengineer part of an existing system, and define a
reengineering methodology based on this experience. Defining a high level
reengineering process involved choosing a primary intermediate representation and
determining what major steps were involved.

Although the approach was accomplished primarily using manual methods, the
reengineering process must be partially automated to be effective. In the course of
experimenting with this process and determining a methodology, it was useful to
consider what parts might be automated. This involved observing what parts were
mechanical, what parts required analysis of large amounts of data, and what parts
could be improved by providing a better reengineering environment. While it was
not feasible to develop the necessary automation as part of this research, it was
possible to capture the reengineering process and the methodology's fundamental
needs for automation.

7/8

NAVSWC TR 91-388

CHAPTER 3

COMPONENTS OF THE REENGINEERING PROJECT

THE SOURCE LANGUAGE: CMS-2

For the reengineering example, it was necessary to choose a source language
which could benefit from reengineering, and which contained interesting systems
characteristics. The CMS-2 programming languagelO was chosen as a source
language because it fit these requirements. There was a large amount of CMS-2
software that was in the maintenance stage and that could be reimplemented in
another programming language to improve portability and maintainability. CMS-2
also contained many systems related characteristics such as hardware dependencies,
real-time performance requirements, reliability requirements, and interesting
intermodular characteristics.

Background

CMS-2 was developed in the late 1960s for the Navy for use in the development
of tactical systems. Software written in CMS-2 is intended to be run on various
AN/UYK and AN/AYK series computers. There are several dialects of CMS-2,
including CMS-2M and CMS-2Y, which correspond to the different hardware
platforms on which they are designed to be run. Nearly all Navy tactical systems
have been implemented using CMS-2 or a dialect thereof.

Structure

CMS-2 programs are divided into data areas, executable statements, and
control information areas. Data can be defined either locally or globally (at the
system level). Executable statements are contained in functions and procedures,
which can be reentrant. Control information, consisting of compiler switches, macro
substitutions, and hardware dependent information, is included in header blocks.

Features

One of the more interesting aspects of the CMS-2 language is how data is
organized and manipulated. CMS-2 provides specific control over how data is
allocated and stored by allowing the user to specify how tables are arranged and
packed. The overlay feature in CMS-2 allows the same data area to be referenced by
different variable names and various types. The addresses of data objects can also be
determined during run time and used in the executable code.

The ability to use embedded assembly language within CMS-2 source code,
referred to as direct code, also gives CMS-2 programs interesting properties. The

9

NAVSWC TR 91-388

DIRECT keyword is used to define a code block that contains macro assembler code
that interacts with the CMS-2. Such code blocks are primarily intended for
input/output (1/0) operations. Direct code blocks can be used for data declaration as
well as execution of operations. Using direct code usually requires an understanding
of how registers are being used by the CMS-2 code that surrounds the direct code
block. In addition, understanding how registers are used in CMS-2 procedures often
requires the compilation of the surrounding CMS-2 code and the examination of the
object code generated.

CMS-2 does not explicitly support data abstraction and provides little isolation
from the underlying hardware. Many of CMS-2's attributes result from the era in
which the language was designed. In the lIate 1960s, both memory resources and
computational speed were severely limited; it was important to be able to closely
interact with the hardware so as to take full advantage of the resources. These
considerations are reflected in the data allocation and manipulation capabilities and
the direct code feature.

THE INTERMEDIATE REPRESENTATION: LARCH SPECIFICATIONS

Software reengineering can use many different types of intermediate
representations. Possible forms include data flow diagrams, abstract grammar trees,
formal specification languages, program design languages, and informal
descriptions. Each of these representations have their benefits and drawbacks. In
choosing one or more intermediate representations for reengineering, it is important
to consider what purpose the representation must serve.

Given the objectives of the research, it was necessary to find an intermediate
representation that was accurate, precise, and flexible enough to robustly handle
systems issues. The Larch family of specification languages was chosen as an
intermediate representation because of its features and the available support. Larch
specifications were flexible and could be tailored to describe software written in
various programming languages. Larch also supported both intermodular and
intramodular specification well, which was necessary for a design representation to
be effective. The availability of semantic and syntactic checking tools for Larch also
made it attractive.

Structure

Larch is a formal, two-tiered set of specification languages. The first tier, the
Larch Shared Language (LSL), provides a programming language independent form
for defining terms used in interface specifications and generating theories about
those terms. The second tier, the Larch Interface Languages (LILs), specify what is
needed to write and use program modules. The LILs contain language specific
information about data representations, module interfaces, and exception handling.

This two tier division is advantageous for reengineering because it allows a
common form of representation, the LSL description, as well as a language specific
form, the LIL interface. There are multiple LILs currently available including
Larch/C, Larch/Ada, and Larch/Modula-3. 1 1,12 This division allows target
languages to be changed by only respecifying the LIL part of the specification.

10

NAVSWC TR 91-388

Features

Larch specifications are based on the use of data abstractions. This
specification style provides an understanding of program functionality based on the
data constructs as well as the control and data flow. By reverse engineering software
into data abstraction-based specifications, new implementations can take advantage
of the encapsulation and data hiding that result from the specification process.

Incremental construction is also a key feature of Larch specifications that make
them both more understandable and easier to compose. Specifications are composed
by extending and constraining preexisting specifications to form new ones. This
technique results in the building of a hierarchy of specifications. Such a hierarchy
abstracts information out of the individual specifications making them more easily
understood. Likewise, the division of specifications into multiple pieces encourages
reuse because existing specifications can, and should be, used as a basis for new
specifications.

For this project, the Larch/C interface language (LCL) was used in conjunction
with the LSL to represent the software's functionality. Support provided for Larch
included LSL and LCL checkers. The LSL and LCL checkers provided automated
semantic and syntactic checking. The Larch Prover, 13,14 which performs logical
checks on specifications, was not used because of the time and resource limitations.
Ideally, LSL and a Larch/CMS-2 interface language would have been used to express
the intermediate representation attained through reverse engineering. LCL was
used, though, because Larch/CMS-2 did not exist and could not be developed within
the scope of this project.

THE TARGET LANGUAGE: THE C PROGRAMMING LANGUAGE

Reengineering software required that the target language be flexible, easily
maintainable, widely supported, and easily portable. The C programming language
was chosen as a target language because it met all of these requirements: it was
flexible in that it supported both high and low level programming needs; it was
simple, it was designed with systems programming as a primary consideration; and it
was popular. The available support for the Larch/C interface language also made it a
good choice.

Background and Structure

The C programming language was developed in the early 1970s by Dennis M.
Ritchie. It was designed as a general purpose programming language that is highly
portable. C is a fairly low level language and relies heavily on the use of library
functions. C uses libraries to avoid hardware dependencies that occur when
hardware dependent functions are included in a programming language. The C
programming language has been standardized by the American National Standards
Institute (ANSI).15,16

Features

C provides pointers and the ability to do address arithmetic, both of which are
used extensively in C programs. A preprocessor allows for macro substitutions and

11

NAVSWC TR 91-388

compiler switches. Standard C libraries provide many of the 1/0, string handling,
and math functions that are built into other languages. C also allows explicit control
over run-time memory allocation and deallocation.

C provides great flexibility because of its low level nature and is easily
understood because of its simplified syntax. It does not include explicit mechanisms
for supporting data abstractions. Reimplementing CMS-2 software in C can allow
simpler expression and improved portability over the original implementation.

THE TEST CASE: THE ASWCS MK 116 MOD 7

The reengineering test case had to be part of an existing system in the
maintenance phase of its life cycle. It was also important that the system could
benefit from reengineering and had interesting systems characteristics. Part of the
ASWCS MK 116 MOD 7 software was chosen as a reengineering test case because it
fit these requirements well. The ASWCS MK 116 MOD 7 had been in the
maintenance phase for several years and had just undergone a revision. It was bound
to specific hardware because of its CMS-2 implementation. It was also a mission
critical computer system, which meant that it had real-time performance
requirements and fault tolerance needs.

Background

ASWCS MK 116 MOD 7 software is a decision support system for an
antisubmarine warfare system. It integrates the inputs from external sensors and
user controls, analyzes the information, and displays relevant information to the
operator. It consists of approximately 200,000 lines of CMS-2 code and is divided into
five major subsections. The ASWCS MK 116 MOD 7 was based on the previous
ASWCS MK 116 MOD 5, which was also written in CMS-2, and has been under
development for approximately 3 years. The ASWCS MK 116 MOD 7 is just
beginning its field use.

Many of CMS-2's characteristics make the ASWCS MK 116 MOD 7 software
difficult to maintain. Lack of modularity and clearly defined interfaces are two
predominant maintenance obstacles. These problems require the understanding of a
arge portion of the system to maintain only a small section of it. The limitation of

eight character symbol names, which CMS-2 imposes, also makes it difficult to create
meaningful names in a large system such as the ASWCS MK 116 MOD 7. The use of
in-line assembly language programming and overlayed memory are additional
factors that make understanding the software difficult.

While the Navy uses the software and is responsible for maintenance, the Navy
did not develop the ASWCS MK 116 MOD 7 software. Rather, the Navy provided the
functional requirements for the system and it was developed by General Electric.
There are several forms of documentation available for the ASWCS MK 116 MOD 7
software system. Three of the primary forms are: the Program Performance
Specification (PPS), the Program Design Specification (PDS), and the Program
Description Document (PDD). The PPS was the functional requirement specification
on which the program development was based. The PDS was the design level
specification that provided a mapping between the PPS and the program modules.
The PDD consisted of a low level description of the function of each module and was
expressed in a program design language (PDL).

12

NAVSWC TR 91-388

The documentation is difficult to understand because of its large quantity
(several shelves worth), the extensive interrelation between the program sections,
and the relationships that must be traced between the various documentation levels.
Also, much of the documentation is inconsistent with the actual software because the
implementation of many sections was deferred. Using this documentation and
comments provided in the software, Navy personnel must correct programming
errors, implement new features, and otherwise maintain the system.

Structure

The ASWCS MK 116 MOD 7 software consists of four major subprograms: the
Auto Processing Computer Program (APCP), Display and Control Computer
Program (DCCP), Mission Support Computer Program (MSCP), and Executive
Support Computer Program (ESCP). The functions of the Mission Support Computer
Program are to support display and control, provide system readiness assessment,
provide readiness control (RC), and handle data extraction and recording. Of these
functions, the RC function provides the ability to initiate, maintain, and terminate
the overall operation of the system. The RC function provides initialization control,
termination control, system recovery, and mode control.

The RCININIP subtask, part of the RC function, performs initialization control
and system recovery for the MSCP. This subtask is executed by four subtask units:
RCININIT, RCINPERD, RCINSUCC, and RCINMGT. RCININIT serves as the
initialization entrance control; RCINPERD serves as the periodic entrance control;
RCINSUCC provides the successor entrance control; and RCINGMT processes the
entry of the time and date.

The RCINSUCC subtask unit is a task that consists of two procedures:
RCINSUCC and RCINFAIL. The RCINSUCC procedure processes the successor
entrance requirements for initialization processing. RCINFAIL handles the
processing for initialization response failures. Of the subtask units and procedures
available, the RCINSUCC procedure of the RCINSUCC subtask was chosen to be a
reengineering example. The choice of the RCINSUCC procedure was somewhat
arbitrary but was based primarily on the size and complexity of the module. The
listing for RCINSUCC c-n be found in Appendix A. The source code itself is fairly
difficult to understand because of the enigmatic variable names and lack of
modularity.

Details

The RCINSUCC procedure is an average sized procedure in the ASWCS
MK 116 MOD 7 system that consists of 521 text lines of code, of which the first 222
lines are PDL comments and following 299 lines are actual source code. RCINSUCC
has no formal parameters passed to it, and there are no local variables for the
RCINSUCC procedure other than two index variables that are used as loop counters.
The data used by the procedure, 12 tables and 25 variables, is contained in separate
data base files containing the data declarations. The data base files correspond to
subtask, task, and global level data. The ASWCS MK 116 MOD 7 software also uses
the features of the SDXISDEX operating system extensively, including task
scheduling.

13/14

NAVSWC TR 91-388

CHAPTER 4

REVERSE ENGINEERING

INTRODUCTION

Reverse engineering was by far the most extensive and challenging part of the
project. Most of the effort included understanding the CMS-2 code and finding ways
of describing its functionality using data abstractions. Although the reverse
engineering process was accomplished manually, automated analysis and support
techniques would benefit this process.

Goals

The goal of the reverse engineering process was to provide a design
representation that would improve maintainability. Based on this goal, the process
was oriented towards providing conceptual information about the design that would
improve understanding and thus improve maintainability of the new
implementation. This goal also made the reverse engineering process more complex
and interesting. The process could have been simplified, but it would not have
provided as effective a study or as useful results.

In particular, it was the objective of reverse engineering to create an
intermediate design representation that abstracted design information about the
software into a more usable form. This form would be more conceptually
understandable than the implementation, show relationships that were not apparent
in the implementation, and hide implementation issues. It was also important to
have available a mapping between the intermediate design representation and the
original implementation so that both forms could be easily compared.

Approach

Improvement in maintainability was achieved through an extensive reverse
engineering process. This process involved symbol renaming, data reorganization,
module decomposition, and specification of sequential dependencies. Through these
phases, a procedural representation of the original CMS-2 source code was
transformed into LCL procedural specifications and the data abstraction, which were
identified, were described by LSL data specifications. The final result was a set of
Larch specifications that represented the functionality of the original software. It is
important to note that the lack of a Larch/CMS-2 interface language was a primary
factor that led to the use of this approach.

The reverse engineering process was performed in six phases: renaming,
module decomposition, data analysis, data recomposition, dependency determination
and specification, and conversion into LCL specifications. Renaming was used as an

15

NAVSWC TR 91-388

initial measure to make the reengineering process and resulting specifications more
comprehensible. Module decomposition was based on complexity and module
structure and was performed to make the procedural representation more
manageable. Data analysis examined the functionality and interrelation of data and
determined how new data abstractions should be formed. Data recomposition
formally defined the data abstractions in the form of LSL specifications. Dependency
determination and specification analyzed the source code to identify sequential
relationships and then specified them in the procedural representation. The final
stage of the reverse engineering process was the conversion of the procedural
representation into LCL specifications.

A representation of the original CMS-2 procedure was transformed during each
stage of the reengineering process. This representation was referred to as the
procedural representation of the original software module. The procedural
representation began as the original CMS-2 source code. Over each phase of the
reverse engineering process, the procedural representation came closer to resembling
the final LCL specifications that were generated, as shown in Figure 5.

Data Dependency
Renaming Analysis Determination

CMS-2 Proc. Proc. Proc. Proc. Proc.
Source Rep. Rep. Rep. Rep. Rep.Code 1 2 34 5Spc

Module Data Conversion
Decomposition Recomposition to LCL

FIGURE 5. TRANSFORMATION OF THE PROCEDURAL REPRESENTATION

The lack of a Larch/CMS-2 interface made the reverse engineering process more
difficult because it was necessary to partially describe the CMS-2 code using LCL
specifications. Ideally, the reengineering process would have reverse engineered the
CMS-2 software to an LSL and Larch/CMS-2 specification set. This interface
language would provide a more natural means of specifyin an interface from the
LSL specifications to the CMS-2 code. Then, as part of the forward engineering
process, the CMS-2/Larch specifications would be transformed to LCL specifications
so that C source code could be written using the LCL specifications. Since there was
no Larch/CMS-2 language available, and would be difficult to develop as part of this
project, it was necessary to respecify the CMS-2 directly into LSLJLCL.

16

NAVSWC TR 91-388

RENAMING

The renaming phase of reverse engineering was one of the most straightforward
and useful parts of the reverse engineering process. This phase involved choosing
more descriptive names for the CMS-2 variables, reexpressing variables as new types
that better characterize the data's function, and reexpressing the procedural
representation of the source code in a form that was more easily understood by the
researcher. These changes would eventually propagate to the Larch specifications
and sometimes to the new implementation. When renaming, it was necessary to keep
track of how the original source code names and structures mapped to the new
procedural representation and vice versa.

The only symbols that were not renamed were other functions, which had not
been reverse engineered, and system functions. It was intended that these symbol
names would be changed at a later point in the reengineering of the system. Only
parts of the system that had been reengineered would have their symbol names
changed. This would make it evident which parts of the system had not been
reengineered yet.

How Renaming Was Performed

The CMS-2 data variables were renamed and CMS-2 keywords and data
variables were reexpressed. Some simple analysis was required to reexpress data
types so as to achieve more effective renaming. Reexpressing the CMS-2 keywords
was helpful for making the procedural representation more generic and thus more
easily understood.

Data Renaming

Data objects were renamed based on their function. Variables of simple types
were renamed as single variables with new names. When complex data structures
were renamed, their subcomponents were renamed also. The names chosen were
primarily determined by comments around the data declaration and comments near
references to the data. The names were also partially determined by simple analysis
of how the data was used.

An example of how a simple variable was renamed is shown in Figure 6. The
variable QTMFG is declared as an integer, but the comments accompanying the
declaration suggest that the variable is actually used as a flag that denotes a critical
task failure and that it will only hold the values 0 and 1. Upon tracing all references
to that variable in the program, it was determined that the variable was indeed only
assigned values of 0 and 1. Based on this knowledge the variable was renamed as a
flag.

Data Reexpression

Simple data analysis was also performed at this stage of the reengineering
process so that the data could be reexpressed as simpler types. Types were simplified
where possible so as to make their functionality more apparent. The example above

17

NAVSWC TR 91-388

based on the declaration:

"*CRITICAL TASK FAIL FLAG, 0/1"
VRBLQTMFG 132S$

QTMFG is renamed as - > crittaskfailflag

FIGURE 6. AN EXAMPLE OF DATA RENAMING

showed how an integer type is determined to be equivalent to a boolean in its use and
its renaming based on this information. Similarly, some tables could be reduced to
tuples, or structure types, and some variables could be reduced to enumerated types.
This analysis was useful as a basis for more complex data analysis at later stages of
the reverse engineering process.

An example of such an equivalence is shown in Figure 7. The table
QMTERMRQ has only one dimension and therefore is equivalent to a tuple or
structure type, which is how it is reexpressed. The introduction and use of a simpler
type is useful in this situation because it enables the data's type to better reflect the
data's function. After renaming and reexpression, it was obvious by viewing the
procedural representation that QMTERMRQ was a message structure. This was not
apparent from the reviewing CMS-2 procedure.

partially based on the declaration:

TABLEQMTERMRQ V 1 1 "TERMINATION(TERM)MESSAGE"$
FIELDREQ I 8 U 0 7 "TYPEOFTERMINATION-

OPERATOR REQUEST OR
RCIN, 1-2 '$

FIELDFAILTYPE I 8 U 0 15 'FAILURETYPE, 1-2"$
END-TABLE QMTERMRQ $

QMTERMRQ (0, REQ) is reexpressed as term _msg.termtype
QMERMRQ (0, FAILTYPE) -> termmsg.failtype

FIGURE 7. AN EXAMPLE OF DATA REEXPRESSION

Keyword Reexpression

CMS-2 keywords were also reexpressed and the structure of the procedure
representation was modified to accommodate the new expression. Reexpression was
used to move away from CMS-2 specific control statements and structures such as a
FOR statement, which is the equivalent of a switch statement in C, to more generic
and LCL-like forms such as an if, else, and else if representation. The indentation
structure was also changed at this stage to assure that the indentation was consistent

18

NAVSWC TR 91-388

throughout the procedural representation and to make the control blocks more clear.
It is important to note that, if a Larch/CMS-2 interface language was being used
instead of the LCL or if the researcher was more familiar with CMS-2, this process
may not have been necessary or as useful.

Substitution

After new names were chosen and the means of reexpression was determined,
the new forms were substituted into its procedural representation for the original
symbols. Also, comments, blank lines, and BEGIN and END statements were
removed from the procedural representation. Removing these constructs resulted in
a 40 percent reduction in the size of the procedural representation. The resulting
procedural representation was a much more readable and understandable form of the
original procedure. This form of the procedural representation would be the form
used in the complexity analysis and decomposition phase.

Renaming Map

It was important to keep a two-way mapping between the original CMS-2
symbol names and the new names so that symbols could be traced from the original
CMS-2 code throughout the reverse engineering process. Maintaining this mapping
was quite tedious especially as more and more modifications were made at later
stages of the reengineering process. This mapping contained not only the name
mapping itself but also information about how and why the mapping was made and
recordedthe conclusions of any analysis. The reexpression information was also
recorded in the renaming map and was used again for later data analysis.

Automation of the Renaming Process

While choosing names is a task that requires human insight and
understanding, the renaming process involves extensive searching and record
keeping that could easily be automated. By automating the location and
presentation of references to symbols, the time and effort required to perform
renaming would be reduced. The automated generation and maintenance of the
renaming map would also be useful. Furthermore, an automated analysis support
could be provided for identifying type simplifications.

MODULAR DECOMPOSITION

Modular decomposition divided existing modules into smaller, more easily
handled modules. This division had the advantage of reducing the number of
external references per module in the final specification and reducing the complexity
of each individual module. The module decomposition was based on separating
control blocks in the procedural representation, but other techniques could also be
used. The result of the decomposition phase was the separation of the procedural
representation into several different modules. Automated analysis tools would be
useful for assisting the analysis and mechanics of this process.

19

NAVSWC TR 91-388

Reasons for Modular Decomposition

The RCINSUCC procedure was originally 299 lines of source code, which was
equivalent to five pages of text. The size of the procedure made it difficult to work
with and understand. Modular decomposition divided the procedural representation
into four additional submodules. This reduced the size of the procedural
representation of the top level RCINSUCC module to 15 lines, and the
representations of submodules to 62, 64, 16, and 25 lines each. Figure 8 shows the
procedural representation of RCINSUCC after renaming and modular decomposition.

I successor-entrancecontrol

calclock

handle initcompletemsg J

Shand leinit response

[hand leinit fail response

FIGURE 8. THE NEW STRUCTURE OF RCINSUCC AFTER RENAMING AND
MODULAR DECOMPOSITION

By creating smaller modules, it was easier to reverse engineer the module in
parts. Smaller units also resulted in final specifications that were more
understandable because the reduction of unit complexity also made the functionality
of each module easier to described. Figure 9 shows procedural representation of the
top level submodule, successor__entrancecontrol. The change in understandability
is evident when the procedural representation shown in Figure 9 is compared to the
original CMS-2 code or even the code's PDL description (see Appendix A). These
benefits propagated throughout the reengineering process to the reimplemented C
code, which had reduced complexity, making it more maintainable.

Dividing the RCINSUCC procedure into smaller subprocedures also resulted in
fewer external variables being referenced by each module. For example, the original
RCINSUCC procedure accessed a total of 37 external data objects. After modular
decomposition, the top level module used only one external data object, and the most
that were used by any one module was 21. The rest of the external data accesses were
contained in the submodules. This decoupling made each module more
understandable because the number of external objects that had to be located and
understood was reduced.

20

NAVSWC TR 91-388

PROCEDURE successor entrance control()

BEGIN
tsd.msgid = ATESsd.control__word $
tsd.sendtask id = ATESsd.word I $
IF(tsd.msg id= = tsdmsgid INIT) THEN

handleinit__complete__msg()
ELSE IF(tsd.msg id = = tsd msg id INITRESP) THEN

handle init fail responsemsg()
ELSE IF (tid.msg id = = tsd msgidINITFAILOVERRIDE) THEN

handle initfail_response()
ELSE

SSLOGERR(error str SUCC ENTCONT, tsd.msg id,NULL)$
EXEXIT(NULL,NULL)$

END$

FIGURE 9. THE PROCEDURAL REPRESENTATION FOR THE TOP LEVEL MODULE
REPRESENTING RCINSUCC AFTER RENAMING AND DECOMPOSITION

How Decomposition was Performed

Decisions about how modules should be divided were based on five factors. The
size of code blocks was one decomposition criterion. The objective of not allowing
overly large modules is a common goal for software. Complexity was another criteria
that was used since reduced complexity made modules more maintainable.
Functionality was also a natural way of decomposing modules. While there were no
specific rules on what limits to use for each of these criteria, specific guidelines could
easilý be chosen.

Isolating hardware dependencies was another basis for creating submodules.
Separating blocks of code bound to compiler switches allowed them to be processed
within later stages of reengineering in ependently of the main procedural
representation. Similarly, direct assembler code could also be isolated by abstracting
it into a submodule.

Automation of Modular Decomposition

It would be easy to automate the processes of complexity analysis and
decomposition. Modular complexity analysis techniquesl 7

, 18 are available that
would be directly applicable to this process. Control flow complexity metrics are
another means that could be used for decomposing modules since there is a close
relationship between separate control paths and separate functionality. Although
automation could improve this process, it is also important that a maintainer's
insight be used to assure that meaningful functional decomposition was achieved.

21

NAVSWC TR 91-388

DATA ANALYSIS

Data analysis was one of the most important parts of the reverse engineering
process because it had the greatest impact on improving system understanding. It
involved evaluating how data was interrelated, what the data's functionality was,
and how data should be reorganized to form abstractions. This process was important
for creating specifications that accurately described the data's functionality. More
accurate specifications would make the system more understandable and provide
better design level encapsulation, which would make new implementations more
maintainable.

Objective

The objective of the data analysis phase was to determine information about
data relationships that were not immediately evident from the data's declaration or
individual references to the data. These relationships included data's functionality,
its interaction with other data, its functional composition, and changes that occurred
in parallel in different data objects. This information was then used to reorganize the
data into abstractions and determine what operations should be provided for the
abstractions. While simplification was the end goal of analysis in the renaming
phase, the goal of data analysis phase was improved recomposition of the data.

Analysis Techniques

The data analysis process began in the renaming phase when data declarations
and references were examined. This simple analysis allowed data types to be
simplified and renamed more appropriately. In the data analysis phase, much more
complex analysis was performed. Data relationships and reorganization strategies
were determined by analysis of the original data's implementation, use, interaction,
and surrounding comments.

Examining how data was implemented provided hints about what purpose the
data served. The data implementation sometimes had to be reconsidered since the
original implementations often were overstated. Mechanisms such as data overlays
also provided interesting clues about the data's functionality. Data declarations were
also useful for determining data's initialization state.

The references to the data objects were the critical i.ieans of determining how
data was used. This information was necessary for determining what operators to
provide for the reorganized data abstractions. Studying how data was used also
provided insight into ways in which complexity could be extracted from the
procedural representation and transferred to data abstractions.

Abstraction of functional properties was one way complexity could often be
transferred from the proceduralrepresentation to data abstractions. For example,
Figure 10 shows the declaration and references to an integer variable that was used
as a counter. Upon analysis, it was determined that the variables QCNT1 and
QCNT2 were declared, assigned a single value, incremented, and decremented. This
information led to the informal specification of a data abstraction to represent these
variables, which is shown in Figure 11.

22

NAVSWC TR 91-388

*** FILE rcinlocd.inc:

0423 VRBLQCNT1 I 32 S "COUNT OFTASK RESPONSES"$
0424 VRBL QCNT2 1 32 S "COUNTOFTASKRESPONSES'$

* FILE rcinsucp.inc:
0296 SET QCNTI TO 1 $
0344 SETQCNTI TO QCNT1+ 1$
0416 SET QCNT2 TO QCNT2 +1 $
0420 SET QCNT2 TO QCNT2 -1 $
0422 IF QCNT2 EQ MZNAVTSK
0454 SET QCNT1 TO QCNT1 + 1 $
0455 IF QCNTI EQ MZINITSK

FIGURE 10. DECLARATION AND REFERENCES TO THE VARIABLES QCNTI AND QCNT2

counter = data type is init, inc, dec, fetchvalue

Overview
A counter is a mutable whole number.

init = proc(c: counter)
effects Sets the value of c equal to 1.

inc = proc(c: counter)
effects Increments the value of c by one.

dec = proc (c: counter)
effects Decrements the value of c by one.

fetchvalue = proc(c: counter) returns (int)
effects Returns the value of c.

end counter

FIGURE 11. INFORMAL SPECIFICATION OF THE COUNTER DATA ABSTRACTION

Studying the relationships between different data objects and their uses
provided insight into how data objects could be reorganized into more meaningful
abstractions. Determining these relationships was a fairly laborious task because of
the numerous types of relationships that could exist and the number of possible
relationships between objects increased by n! with the number of data objects. It
would have been easily possible to reduce the number of relationships that had to be
checked using various techniques, but because of the limited scope of this research,
only interrelated data access was analyzed.

23

NAVSWC TR 91-388

Interrelated data access occurred when one data object was referenced or
modified in a manner that consistently corresponded to the access or modification of
another data object. This often corresponded to the existence of significant functional
relationships between data objects. Interrelated data access implied that there was a
logical relationship that could be stated about the data, which might be abstracted
out of the procedural code and into data abstractions. This relationship could
possibly be incorporated into a single operator for a data abstraction that performed
the function of the previously existing logical relationship between the data.

Figure 12 shows an example of how interrelated data access was determined
and abstracted. The variable QTIMLEFT is consistently assigned a value based on
the variables QIODONE and QINISTRT throughout the program. This logical
relationship leads to the organization of this data into an abstraction that hides the
specifics about how the time remaining value is updated.

SET QTIMLEFT TO 1024 * (30 - (QIODONE-QINISTRT)) $

is abstracted to.

updatetimeremaining = proc(t: timer)

FIGURE 12. ABSTRACTION OF FUNCTIONAL INFORMATION INTO A DATA
ABSTRACTION OPERATOR

The analysis of the data's conceptual basis provided a means for understanding
the designers' intents and the rationale behind the data's original implementation.
This information was determined based on the comments accompanying the data
declarations, the comments accompanying the data references, and the PDL
description of the source code. A conceptual basis was critical for making good
decisions about how to reorganize the original data into data abstractions.

Integrated Analysis

None of the characterizations of the data was sufficient to develop accurate and
meaningful design abstractions for the software. This was because none of the
characterizations was complete. For example, data's implementation might have
been biased by plans for future changes. This consideration could have led to an
implementation that was more complex than it needed to be, making the
implementation an inaccurate characterization of the data's current functionality.
Coincidental relationships between data could be misinterpreted so that data which
was functionally unrelated might be incorrectly grouped in the same abstraction.
Comments in the program could also have been misleading, causing the conceptual
characterization to not correspond to the code's actual function.

Taken together, as shown in Figure 13, it was possible to determine data
abstractions that would make the system easier to understand. These abstractions

24

NAVSWC TR 91-388

were defined in terms of their operations and informal descriptions of their function.
The data abstractions created either mapped to a single data object, multiple data
objects, or part of a data object from the original system. Much of the abstraction
process was based on human judgement and it is likely that different decisions would
lead to different data organizations. Regardless of the variability of the organization,
it is most likely that the end result would still be an improvement over the data
organization in the original software.

IDataI°"
II aAnalysis Abstractions

bCt mments in CM 2 i PhaseSource Code

SDocumentat'3nI

FIGURE 13. INTEGRATION OF DATA ANALYSIS INFORMATION

Data-Operator Mapping

As with renaming, it was important to maintain a mapping of the relationship
between the renamed CMS-2 data objects and the operators for the new data
abstractions. This was necessary so that it would be possible to trace relationships
between the original CMS-2 implementation and the reorganized data abstractions.
This abstraction map contained information about which data abstraction operators
corresponded to original data references. An example of the data mapping for the
counter abstraction can be found in Appendix B. This mapping also provided a means
of verifying that all of the original CMS-2 data had been accounted for in the reverse
engineered data abstractions.

Automation of Data Analysis

The automation of data analysis was critical for the process to be efficient and
complete. The process of locating and switching between data declarations and
references was a time consuming task. It was further complicated by the data
overlay ability that CMS-2 provides, whereby the same data can be referenced by
multiple variable names. As with finding references, locating and comparing
comments and PDL descriptions of data objects and their references could be
improved by providing an effective presentation system. Determining relationships
between data was also inefficient because it was extremely difficult to manually
make comparisons of how different data combinations were accessed across the entire
program space.

25

NAVSWC TR 91-388

Automation would best be integrated into a decision support system that would
provide effective presentation of information and automated analysis of data. An
important function of this system would be to automatically display all of the
declarations and references to data and improve inspection techniques. Providing
statistics about data usage and information about correlations between data objects
could also be automatically performed. 2 Automated maintenance of the abstraction
mapping would also be useful since it is a simple, but time consuming, task to
manually keep the map updated.

DATA RECOMPOSITION

The goal of data recomposition was to formally define data abstractions that
would functionally specify data organization and usage. Data recomposition was
achieved through the formulation of Larch specifications. While formulation and
composition of LSL specifications was performed manually for this research,
automation could be used to assist in constructing the specifications and reduce the
time necessary to perform recomposition.

Composition of LSL Specifications

The knowledge gained through the data analysis process was used to form LSL
specifications. LSL traits formally specified the operators defined in the data
analysis phase. The definition of the corresponding LCL specification was postponed
until the forward engineering process. Automated semantic and syntactic checkers
were used to verify the legality of the traits. An example of the end result of data
recomposition is shown in Figure 14.

The operators defined in the introduces clause of LSL specifications were based
on the operators that were determined to be useful in the data analysis phase.
Depending upon how the abstraction was formulated, a new operator might perform
the function of several operations on the original data. On the other hand, it might
take several operators to accomplish what one operation did previously. The former
case was more desirable because it transferred complexity from the procedural
representation to the data abstraction and was more common.

The types that were used in conjunction with the LSL trait operators were also
defined. These types including tuples, enumerations, integers, and strings. They
were chosen based on the types of the data from which the abstraction originated,
often with simplified types.

The statement of logical equations for reverse engineered specifications was the
final stage of the data recomposition process. The generation of this logic was largely
based on the informal specifications created in the data analysis phase and the
abstraction mapping from the original CMS-2 code to the reformed data abstractions.
Informal specification was useful for providing the specifier with a conceptual notion
of the operators' function. The data map was critical in determining the specific logic
associated with the operators.

After the LSL specifications were composed, it was necessary to verify that they
were legal syntactically and semantically. This was accomplished using the LSL
checker, which warned of errors that might exist in the specification. The Larch

26

NAVSWC TR 91-388

counter: trait

introduces
COUNTERstart: -> CNTR
COUNTERminc: CNTR-> CNTR
COUNTERdec: CNTR-> CNTR
COUNTERfetchvalue: CNTR -> Int

asserts
CNTR generated by [COUNTER_start, COUNTER__inc, COUNTERdeci
CNTR partitioned by [COUNTERfetchvaluel
forall c: CNTR

COUNTER__fetchvalue(COUNTER start) = = 1;
COUNTERinc(COUNTER dec(c)) = = c;
COUNTER_fetchvalue(COUNTERinc(c)) = =

COUNTERfetchvalue(c) + 1;
COUNTER_fetch_value(COUNTER dec(c)) = =

COUNTERfetchvalue(c) - I

FIGURE 14. LSL SPECIFICATION FOR A COUNTER

prover might have been used to perform logical checking but was not used because of
time constraints.

Automation of Data Recomposition

The efficiency of the data recomposition phase would be improved by providing
an environment in which specifications could be easily composed. Much of the effort
required in this phase was in locating data object references in the procedural
representation so that the logic associated with operators could be determined.
Automated location and presentation of this information would reduce the time
required to perform data recomposition. Automatic generation of LSL skeleton text
for the data abstractions would also be useful.

For example, an automated tool could create a skeleton LSL specification based
on the information gained in the data analysis phase. It could then prompt the user
to define the logic associated with an operator, or a set of operators, by displaying all
of the references to the original data that the operator replaced. The tool could
determine which references to display using the data-operator map, which was
created in the data analysis phase. The tool would perform this process for each of the
operators and then prompt the user to specify any assumes, generated by, partitioned
by, implies converts, and exempts information.

27

NAVSWC TR 91-388

PROCEDURAL SPECIFICATION

Procedural specification was the stage where the procedural representation was
made consistent with the LSL traits. This process required the substitution of
operator calls into the procedural representation and the expression of iteration and
iterated blocks in logical form. The procedural specifications were simplified by the
information hiding that the data abstractions provided. This conversion could be
almost completely automated.

Operator Substitution

The substitution of operator calls for data references in the procedural
representation was based on the mapping between the original CMS-2 data and LSL
traits. This information was contained in the abstraction mapping. Often the
substitutions were direct. Occasionally, though, it was necessary to restructure the
procedural representation to account for conceptual changes introduced by the data
abstractions. This restructuring usually corresponded to removal of iterative or
comparative statements.

Expression of Iteration

The substitution of logic and trait operators for iterative constructs in the
procedural representation was straightforward. An example of this substitution is
shown in Figure 15. A logical forall statement is used to express the iteration
through a set of task ids. A conditional statement and the TASK is of type
operator are used to state which specific task ids in the set are to be used. This is
followed by the statement or group of statements to be performed in each iteration.

VARY QLNDXA WITHIN MZGROUPI $
EXQUEUE INPUT MZGROUPI (QLNDXA, TASK), GNINIT,

GNMINIT, QMOO0 (0,0) $
END" VARY"$

maps to...

\forall tid: task id
(if TASK is_-of_type (tid, tasktypeNNAV) then

EXQUEUE (Lid, EXQUEUE valueINIT, CPCI msgINITIALIZATION,
INITMSG_ get__handle (im'))

else true)

FIGURE 15. AN EXAMPLE OF 11OW ITERATION WAS RESPECIFIED

28

NAVSWC TR 91-388

Automation of Procedural Specification

Much of the substitution involved in this phase of reverse engineering could be
automated since it was accomplished using simple substitution rules. There were
more complex cases, though, which required additional work. These cases would be
best supported by an environment that would guide the user through the substitution
process by making the necessary information available to the user.

DEPENDENCY ANALYSIS AND SEQUENTIAL SPECIFICATION

Dependency analysis and specification were necessary because the semantics of
LSL and LCL did not specify the order in which operations were performed. The
sequential execution of the original CMS-2 code implicitly determined an order in
which the CMS-2 statements would be executed. To improve the accuracy of the
reverse engineered specification, it was necessary to explicitly state these sequential
relations in the reverse engineered Larch specifications. Since this process was
wholly determined by the original CMS-2 code, its procedural representation and the
data abstractions, the process could be completely automated.

Dependency Analysis

It was necessary to determine which statement(s) in the procedural
representation should sequentially follow other statement(s) because of
dependencies. The reason for this analysis was that one statement might modify a
shared (or global) variable that another statement that followed it might use also. In
this case, the second statement would be dependent on the action of the first
statement and must sequentially follow the first statement to perform correctly.

Although the field of dependency analysis has been studied extensively, 19 -2 1

the method for determining dependency relationships in this research was simple.
Dependency analysis was performed at the intramodular level; since all modules had
to be called by statements from within other modules, the intermodular case would be
accounted for also. In the procedural representation, adjacent operators of different
traits were considered independent. External function calls, on the other hand, were
always treated as dependent on whatever statements preceded them since it was
unclear what data they might access. Similarly, statements that followed an
external function call were considered dependent on it.

An example of the results of dependency analysis is shown in Figure 16. The
sample CMS-2 code shows part of a conditional block that has three dependent
sequential blocks. The first block is the EXSTOPER function call. The second block
contains the next three statements, which reference and modify different data
objects. The third block is the EXQUEUE function call. It is important to note that
the three assignment statements can be grouped together in the same block because
they operate on different data objects.

Sequential Specification

Once the dependency relationships were determined, it was necessary to specify
them. An example of a sequential specification is shown in Figure 17. This
procedural representation corresponds to the CMS-2 source code in Figure 16. There

29

NAVSWC TR 91-388

EXSTOPER INPUT RCIN $ < -1

SET MZTSKINI (1, INIT) TO MZINIT $ <.
SET QCNTI TO QCNTI + 1 $ <-2
SET QRCINVOK (0, REASON) TO 0 $ < -

EXQUEUE INPUT RCIN, GNSUCC, GNMINIT, QRCINVOK (0, 0) $ <-3

FIGURE 16. IMPLICIT SEQUENTIAL DEPENDENCY RELATIONSHIPS IN CMS-2

are three dependent statement blocks that are all sequentially dependent on one
another. Each of these blocks are specified in groups delimited by a ";" character.
The order in which the statements are listed corresponds to the order in which the
blocks must be executed. If nondeterminism was also a consideration, sequential
relationships could have been specified using a modified form of guarded
commands. 2 2 ,23

EXSTOPER (task id RCIN);

fir' = TIR _set _init(tir, taskidIOCD)/\
taskresponsecounti' =

COUNTER inc(task responsecountl)/\
sir' = SIRset(sir,sir__INIT__"OMPLEfE);

EXQUEUE (task id RCIN, EXQUEUE value SUCC,
CPCImsgINITIALIZATION, SIRgethandle (sir'));

FIGURE 17. SEQUENTIAL SPECIFICATION IN THE PROCEDURAL REPRESENTATION

Automation of the Analysis and Specification

Determination of sequential dependencies and their subsequent specification is
a process that could be performed completely by automated methods. By analyzing
modules' procedural representation, dependent code blocks can easily be determined.
Sequential specification then only requires containing those blocks using the ";'
character and specifying their order.

The dependency determination method used was simple and could be easily
improved upon using automated methods. One improvement would be to precisely
determine sequential dependency relationships. This could be accomplished by
checking external functions to determine what data they reference. This information
would allow a more accurate specification of the dependencies of external function
calls.

30

NAVSWC TR 91-388

GENERATION OF LCL SPECIFICATIONS

The final phase of the reverse engineering process was the conversion of the
procedural representation to LCL specifications. This was accomplished by
generating stub LCL specifications for the LSL traits, including and importing files
created in the reverse engineering process, defining procedural interfaces, removing
or commenting out the sequential information, and checking the specifications. The
final LCL specification, without the specified sequential information, for the top
level procedure that replaced RCINSUCC is shown in Figure 18. The final
transformation of the procedural representation to LCL specifications could be
automated by producing skeleton stubs for the LSL specifications and by
automatically defining the LCL procedural interfaces.

imports system functions, taskschedulingdata,
initialization msg, date time msg,
ATESschedulingdat;a,systWm__alertsmsg;

uses successor entrance control (taskscheddata for TSD,
init__msg for'IM,
sysalertsmsg for SAM,
date time msg for DTM,
ATES sched data for ATESSD);

void successor entrance control (void) taskscheddata tsd;
initmsg im;
sysalertsmsg sam;
date time msgdtm;
ATESS scheddataAsd; I

ensures
tsd' = TSD setmsg id (TSDset send taskid (tsd,
ATESSDget__word_1 (Asd)), ATESSDget-control-word (Asd'))/\

(if TSD is msg id(tsd^, tsdmsgid INIT) then
handle init completemsg (tsd, im, sam, dtm^)

else if TSD is msgid (tsd^, tsd msgidINIT RESP) then
handle__iMitresponsemsg (tsd ̂ , im ^, sam)

elseifTSD is msg id(tsd',
tsd msgid INIT.FAIL OVERRIDE) then

hand le initfailrespon se (tsd ^, im ^, sam
else

SSLOGERR (error str SUCC ENT CONT,
TSD get _msg idhandle(tsd-:), NULL))/\

EXEXIT (NULL, NULL);}

FIGURE 18. THE LCL SPECIFICATION FOR successor entrance control

31

NAVSWC TR 91-388

Generating LCL Stubs

It was necessary to generate LCL stubs for the LSL data abstraction traits so
that it could be verified that the LCL procedural specifications, which were the result
of reverse engineering, were legal specifications and were consistent with the LSL
traits. The stubs were generic LCL specifications, which only provided the LCL
checker with information about parameter types and data representations (see
Figure 19). Global variables were also declared in the LCL stubs so that the LCL
checker could be used.

imports taskid;

typedefenum {tsd _msgid_INIT,
tsd msg id INIT RESP,
tsd msgidlNIT__FAILOVERRIDE} tsd msg id;

abstract type handle;

abstract type taskscheddata;

taskscheddata tsd;

uses taskschedulingdata (task sched data for TSD,
task-id forTASK ID,
tsd msg idforTSD MSGID,
handle for HANDLE);-

FIGURE 19. THE LCL STUB FOR THE taskschedulingdata LSL TRAIT

Parameter types were defined in the LCL specifications based on the parameter
types specified in the LSL traits. In the LCL stubs, the data type used for all of the
data abstractions, which the LSL traits described, was an abstract type. Abstract
types were chosen because they did not provide a bias towards how the data should be
represented in the new implementation. The decisions about how data abstractions
should be reimplemented was left for the forward engineering phase.

Completing the Specifications

To complete the LCL specifications, it was necessary to modify the procedural
representation so as to explicitly include the necessary traits. These were easily
determined by examining the logical statements following the ensures clause of the
procedural representation. Any trait referenced in that logic had to be included in
the LCL specification through either an imports or a uses statement.

It was also necessary to fully define the LCL procedural interfaces. This
required declaring both direct and global parameters that were passed to the modules
defined by the procedural representations. Which parameters to pass explicitly was
defined by the original code and the modular decomposition. Global parameters were

32

NAVSWC TR 91-388

determined by examining the logic contained in the procedural representation and
determining which of the variables used were not passed explicitly to the procedure.

Since sequential specification was not defined in the LCL, the sequential
specification determined through reverse engineering was not included in the LCL
procedural specifications themselves. Instead, it was intended that the sequential
specification, contained in the intermediate procedural representation, would be used
in the forward engineering process to determine the sequential constraints to which
the new implementation must conform.

Checking the LCL Specifications

Checking the LCL specifications was an important and time consuming part of
their creation. Using the LCL and LSL checkers, it was possible to verify that the
specifications were consistent and syntactically legal. They also verified that the
same names and types were used consistently in both the LCL procedural
specification and the LSL trait specifications. Checking was time consuming because
there were a number of inconsistencies and errors that occurred because of the
numerous changes that were made. Many of the errors were clerical, some were due
to changes that had not been made throughout all of the specifications, and a few
errors were mistakes that had been made in the specification process.

It is likely that the number of errors encountered in the specifications would be
reduced if the entire reverse engineering process was automated. It was extremely
difficult to manually maintain consistency throughout the numerous iterations that
were involved in the reverse engineering process. This difficulty resulted in more
time being spent correcting inconsistencies when LCL specifications were checked. It
is unlikely, though, that the specification mistakes would have been avoided or
detected other than by use of the checkers.

Automation of LCL Specification

Much of the work done in the procedural specification phase could easily be
automated. In fact, the checking process itself was already automated. None of the
other tasks performed, except for error correction, required extensive human
comprehension or interaction. At the same time, these tasks were time consuming,
making them a prime candidate for automation.

33/34

NAVSWC TR 91-388

CHAPTER 5

FORWARD ENGINEERING

The forward engineering process involved fully defining LCL specifications for
the data specifications and then implementing both the procedural and data
specifications, which were generated through reverse engineering, in C source code.
Completing the LCL data specifications required determining how traits should be
represented and interfaced. This information allowed them to be implemented.
Implementing the LCL procedural specifications required substitution of the
corresponding C code for the LCL logic. While much of this process required complex
decision making, automated support could be provided to help implementors choose
among possible implementations that were stored in a library and then
automatically perform the necessary substitutions.

IMPLEMENTATION OF THE DATA SPECIFICATIONS

There were many possible C implementations of the reverse engineered data
abstractions. While the specification precisely stated the software's functional
requirements, it stated little or nothing about how these functional requirements
were to be met. Consequently, it was first necessary to determine how data
abstractions would be implemented in C. Once this was determined, it was necessary
to complete the LCL specification stubs. Given the LSL and LCL specifications, it
was then possible to write the C implementations for the data abstractions.

Determining LSL Trait Implementations

The first step in forward engineering the data specifications was to decide which
data specifications would be implemented as data abstractions in C. In creating the
LSL specifications, implementation specific information had been abstracted to
provide the most flexible and easily understood representation. While these
abstractions were useful for better understanding the data's functionality, many
would be better represented in a C implementation as simple types. On the other
hand, some of the more complex abstractions would be best implemented as
abstractions in C to better maintain their properties.

Two examples of data specifications that were mapped directly to C types were
the flag specification and the counter specification. The flag specification, shown in
Figure 20, could be implemented as an integer variable in C. There would be little
gain in maintainability by implementing it as data abstraction in C. It would just
require more time and effort and reduce program performance.

An example of a data specification that was better implemented as an
abstraction would be the taskinitializationrecord specification, shown in

35

NAVSWC TR 91-388

flag: trait

introduces
new: - > FLAG
FLAGset: FLAG-> FLAG
FLAG._unset: FLAG-> FLAG
FLAGcheck: FLAG -> Bool

asserts
generated by [new, set, unset)
partitioned by [FLAG__check)
forall f: FLAG
FLAG__check (FLAG-set (f));
-FLAGcheck (FLAGunset (f))

exempts FLAGcheck (new)

FIGURE 20. THE LSL SPECIFICATION FOR A FLAG

Figure 21. This abstraction maps task ids to an initialization state and yields the
number of tasks that have to be initialized. It is not specified how the mapping is
performed, and it is better kept hidden by an abstraction. Hiding the implementation
details allows the representation to be more easily changed and is more easily
understood conceptually in the code since the mapping details are not apparent.

taskinitializationrecord: trait

assumes Container (TIR for C), Integer

introduces
TIR clear: TIR-> TIR
TIR set init: TIR, taskid-> TIR
TIRis init: TIR, task id -> bool
TIR__getnumtasks _toinit: TIR -> Int

asserts
partitioned by[TIR is init, TIR_getnumtaskstoinit]
forall tir: TIR, tid, tidi, tid2: taskid
TIRgetnum_ taskstoinit (tir) - = 12;
TIR is init (TIR._clear (tir), tid) == false;
TIRis init(TIR set init(tir, tidi,),tid2)==

iftidi -= tid2 then true
elseTIR is init(TIR set init(tir, tidl))

FIGURE 21. THE LSL SPECIFICATION FOR THE task initializationrecord
DATA ABSTRACTION

36

NAVSWC TR 91-388

The task initialization__record is a simple example of the type of abstraction
that might be better implemented as a data abstraction. The timer data abstraction,
shown in Figure 10, is interesting because it abstracts implementation specific
information (e.g., computational factors) out of the procedural code. This simplifies
maintenance by centralizing where changes are made. In the case of a time-based
abstraction, this can be useful since operating system time functions often vary from
system to system.

It is less clear for the counter specification shown in Figure 14 whether it should
be implemented as an abstraction or a C integer type. The operators could be
implemented as new C functions for a data abstraction or as existing C functions that
operate on integers. The C integer type was chosen because it was felt that no
significant loss in maintainability would result and there would be a significant
improvement in performance. Also, the + + and -- operators in C correspond nicely
to the COUNTER _increment and COUNTERdecrement functions specified. It is
important to understand that while the use of an integer type would not provide
information about the true nature of the data, the LSLJLCL specification would, so
that maintainers would have a means of accurately and precisely understanding the
counter data type.

An interesting consideration is that it is unlikely that the original system's
designers intended for variables used as counters to ever be less than zero. This
invariant was not included in the reverse engineered specifications because there was
information code that justified stating it based on the original system. 1 1 the forward
engineering process, invariant could easily be added to the specification for a counter,
as an extension of the specifications, based on intuitive and logical deductions about
the counter abstraction.

If the invariant:

COUNTER fetch value(c) > = 0

had been added to the counter data specification, implementing counters as C data
abstractions would have been more advantageous than as an integer type. A C data
abstraction implementation would have employed the data abstraction to enforce this
invariant, and relieved the procedural code, which used counters, from this
responsibility.

Completion of LCL Specifications for Data Specifications

After it was determined which data specifications would be implemented as
data abstractions, the stub LCL specifications for those specifications were replaced
by fully defined LCL interface specifications and then checked. Composing the LCL
specifications was an easy task since the LSL specifications contained most of the
detail. It primarily involved specifying the names and parameters associated with C
procedures used to operate on the implemented data abstractions and how they
incorporated the LSL trait operators. The LCL specification for the
task initializationrecord is shown in Figure 22.

37

NAVSWC TR 91-388

imports taskid;

abstract type taskinit__rec;

task init._rec tir ;

uses taskinitializationrecord (taskinitrec for TIR, int for Int);

void tir__clear (void) taskinit__rec tir; {
modifies tir;
ensures tir' = TIRclear (tir);}

void tir set init (taskid tid) taskinitrec tir;{
modifies tir;
ensures tir' = TIRsetinit(tir^,tid);}

bool tir is init (task id tid) taskinitrec tir;{
ensures result = TIRisinit (tir^, tid);
}

int tir__get numtaskstoinit (void) taskinit__rec tir ; {
ensures result = TIRget numtaskstoinit (tir;
}

FIGURE 22. THE LCL SPECIFICATION FOR THE task initialization DATA ABSTRACTION

Implementing the Data Abstractions in C

Based on the LSL and LCL specifications, the C source code was then written for
the abstractions. This process required the implementer to determine a suitable
mapping for the abstraction into C and to write C source code that corresponded to
the logic contained in the LSL specifications. The implementation of the
taskinitializationrecord is shown in Figure 23.

The advantage offered by implementing the task initializationrecord
abstraction as a data abstraction is more apparent whe-nfuture maintenance
requirements are considered. For instance, a logical extension to the program that
used this data abstraction might be to check a task's initialization state based on an
attribute 'ther than the task id, possibly task priority. By hiding the
implementation of the task initializationrecord, the implementors would be free
to modify the underlying data representation and add new interface procedures
without affecting preexisting ones.

38

NAVSWC TR 91-388

#include "standard. h"
#include "taskid.h"
#include "taskinitializationrecord.h"

int taskinit__rec [NUMOFINIT__TASKS] [21
{task _idDBXC}, {task id IOCD), {task id 1028},
{task _id _NVCN}, {taskid_ IOWN), {taski id. 1053},
{task id IOKC}, {task idDCCN}, {task id 1019},
{task__idSACT}, {task id__WCHP}, {taskidRCMC};

void tir__clear (void)
{

int i;
for(i0=;i<NUMOFINITTASKS;i+ +)

task__init__rec[iJ [INIT._STATUS] = NOT__INIT;}

void tirsetinit (taskid tid)
{

int i;
for (i = 0; taskinitrec [i] [TASK IDI! = tid, i++);
taskinit__rec [i] [INITSTATUS] = INITIALIZED;

I
mnt tir__ is__miit (task__id tid)

int i;
for (i = 0; taskinitrec[il [TASK ID]! = tid;i++);
if (taskinit__rec[iJ [INITSTATUS]) return (TRUE);I

int tirget numtaskstoinit (void)
{

return (NUMOFINITTASKS);I

FIGURE 23. THE IMPLEMENTATION OF task-initializationrecord

The Specification-Implementation Mapping

It was important to maintain a mapping of how the LSL operators were replaced
by C implementations. This operator-implementation map made the Larch
specifications more useful as documentation for the newly implemented system and
made it easier to implement the procedural specifications. The map contains
information about the data specifications which had been implemented as data
abstractions in C and those which had been implemented as simple types. For
example, the map would show that the LSL operator COUNTER inc mapped to the
+ + tunction. Similarly, the LSL TIR is init operator would map to the
tiris__init function that was implemneted.

39

NAVSWC TR 91-388

IMPLEMENTATION OF THE PROCEDURAL SPECIFICATIONS

Implementing the procedural specifications was a fairly simple task once the
data abstractions had been implemented. It involved substituting the mapping from
LCL logic to C keywords and constructs, and mapping LSL operator calls to the C
implementations of those calls. The C implementation of
successorentrancecontrol is shown in Figure 24.

include "systemfunctions.h"
include "taskschedulingdata.h"
include "initializationmsg.h"
include "datetime_..msg.h"
include "ATES._scheduling data.h"
include "system._alerts__msg.h"

void successorentrance__.control (void)
{

TSD _set _msg id (ATESSDgetcontrol word());
TSDsetsendtaskid (ATESSD getword__1();
if(TSD is msg.id (tsd..msgjidINIT))

handle__init._.complete msg 0 ;
else if(TSD _is msgjid (tsdmsg idJINIT__RESP))

handleinit response msg();
elseif(TSD is msg.id (tsdmsg idJINITFAILOVERRIDE))

handle__iit._fail response 0;
else

SSLOGERR (error strSUCCENTCONT,
TSDget msg id handle (), NULL);

EXEXIT (NULL, NULL);I

FIGURE 24. THE C IMPLEMENTATION OF successorentrancecontrol

Substitution

Mapping from the LCL logic to C keywords was simple but required some
judgement in choosing which particular mapping to use. Much of this decision
making was stylistic, such as whether a forall should be implemented as a for, while,
or do loop or if a logical if should be implemented as an if or a switch statement.
Other tasks such as removal of lobal parameters, conversion from imports to
#includes, and changing " to ; "often required direct substitution.

The LSL operator calls in the LCL specification were substituted with the C
implementations for those operators. This substitution was easily accomplished
using the operator.-implementation map produced during the implementation of the
data specifications. Names for direct mapping between the LSL operators and the C

40

NAVSWC TR 91-388

data abstraction functions could be substituted directly. Operators that did not have
direct mappings into C functions required slightly more complex substitutions.

No multiprocessor implementations were written for this project, so the
guarded commands did nothave any corresponding C implementations. Instead, the
guarded commands were used to determine the order in which the specified
dependency blocks would execute in the new C code.

AUTOMATING THE FORWARD ENGINEERING PROCESS

Automation would be particularly useful for maintaining the operator-
implementation map, for providing decision support, and in maintaining libraries of
reusable C modules. Decision support for choosing possible C data types or possible C
data abstractions from an available library of implementations would reduce the
time required to implement the specifications and improve the quality of
implementations.

It also would be easy to automate the implementation of the procedural
specifications. Since most of the substitutions made were based on the operator-
implementation mapping (or a simple keyword mapping), it would be easy to create
tools that would automatically perform the substitution. Such automation would not
only support reengineering efforts it would also aid in future maintenance activities.

41/42

NAVSWC TR 91-388

CHAPTER6

ANALYSIS OF RESULTS

Analysis of this reengineering project shows that reengineering can provide
many of the expected benefits and that this particular methodology is also useful for
addressing systems issues. This analysis presents reengineering examples and an
evaluation of the results from which conclusions are drawn.

INTERESTING EXAMPLES

There are many interesting cases which help with understanding how
reengineering can improve software quality and maintainability. Three specific
examples of reengineered code follow with commentary on the advantages that
reengineering provided.

Logical Data Organization

Data reorganization was extremely useful for improving understanding of
software as well as improving maintainability by providing more logical grouping of
data. The respecification of the MZTSKINI table is an example of data reorganized
through reverse engineering. The original CMS-2 declaration of MZTSKINI is shown
in Figure 25.

TABLE MZTSKINI V 3 13 "TASK INITIALIZATION TABLE" $
SUB-TABLE MZGROUP1 2 8 "NON-NAV DEPENDENT TASKS" $
SUB-TABLE MZGROUP2 10 3 "NAV-DEPENDENT TASKS" $
FIELDTASK 1 32 S 0 31
P DBXC, IOCD, IOWN,1053,WCHP,

SACT, IOKC, DCCN, RCMC, NVCN,
1019,1028, IOCD $

FIELD TASKNM H 4 1 31
P H (DBXC), H (IOCD), H (IOWN), H (1053), H (WCHP),

H (SACT), H (IOKC), H (DCCN), H (RCMC), H (NVCN),
H (1019), H(1028), H (IOCD) $

FIELD CRIT I 8 U 2 23
P 1, 1,7 (0), 1,3 (0) $
FIELDINIT I 8 U 2 15 $

END-TABLE MZTSKINI $

FIGURE 25. THE CMS-2 DECLARATION OF THE MZTSKINI DATA TABLE

43

NAVSWC TR 91-388

MZTSKINI was originally used to store the initialization state of certain tasks
and to store information about attributes associated with the tasks. These attributes
provided information about the tasks' NAV dependency and if the tasks were critical.
Through data analysis, it was determined that the initialization state for a task was
modified during program execution, but the other attributes were not changed.

Based on this knowledge, during data recomposition, the MZTSKINI data was
divided into two abstractions (see Figure 26): (1) a task abstraction that contained
operators capable of determining the attributes associated with a task given its
task id and (2) the task initializationrecord (tir) abstraction, which was a
mut•ble record of whether a task had been initialized or not. This specification better
represented the true nature of the data contained in the MZTSKINI table.

[task I task initialization record I

FIGURE 26. THE DATA ABSTRACTIONS THAT REPLACED MZTSKINI

Since the tir used information associated with tasks, the task trait was used in
its specification. The data division in the new abstractions also had the beneficial
side effects of removing implementation details from both the data specification and
the procedural specification.

The C implementation of this specification was undetermined. It would be
possible, though probably not desirable, to recombine the abstractions into a similar
implementation. This implementation choice would be unlikely because, based on
the specifications. there was no apparent reason for combining the two data
abstractions. It would be more likely that the two would be reimplemented
separately so as to provide better modularity. This way, a change in the number of
tasks with attributes or the number of attributes associated with a task would not
affect the implementation of the tir. Similarly, if the tir needed to be changed so as to
support more than two initialization states, it would not require changing the
implementation of the task specification.

Removal of Implementation Details

An example of how implementation dependent aspects of software were
abstracted away using Larch specifications is apparent when examining the
MZTSKINI exam ple further. In the original CMS-2 implementation, the table
MZTSKINI was referenced by an ID number that was contained in a field of the table.
To fetch data associated with the ID number, it was first necessary to iterate through

44

NAVSWC TR 91-388

the table's ID fields to locate the index associated with the ID. This resulted in
additional complexity in the procedures that used MZTSKINI.

In the recomposed data abstractions that provided the functionality of the
MZTSKINI table, the information associated with a taskid is referenced directly by
the taskid. There is no concept of table indices in the specification because it is a
purely implementation dependent notion. The result is that the iteration and
comparing associated with the table implementation is no longer necessary in the
procedural specifications (see Figure 27).

VARY QLNDXA WITHIN MZTSKINI $
IF QDATAPK (0, SENDTSK) EQ MZTSKINI (QLNDXA, TASK) THEN

SET MZTSKINI (QLNDXA, INIT) TO MZINIT $
END"VARY" $

after data reorganization reduces to

tir' = TIRsetinit(tir ,taskidDBXC)/\

FIGURE 27. ELIMINATION OF IMPLEMENTATION DEPENDENT ASPECTS

Removal of Hardware Dependencies

The removal of hardware dependencies was also achieved through data
reorganization. One example of this is in the reengineering of the RCINSUCC
procedure, where a compiler switch is used to differentiate between two sets of
possible values in a task group. The original CMS-2 source code containing the
compiler switch and the part of the LCL specification corresponding to it are shown in
Figure 28. Note that CMS-2's BEGIN keyword is equivalent to a case statement C.

The compiler switch, which is used to differentiate between implementations
for different target platforms, is abstracted out of the procedural specification
through the data abstraction process. In the new specification, the logic does not
specify at the procedural level which tasks are in which sets. It is only stated that a
task must be a member of a particular set to satisfy the condition. The determination
of what tasks are in the NNAV set is abstracted to the LSL specification of the task
trait.

One means of specifying the two possible NNAV task groups would be to specify
two different task traits. One specification would correspond to the EDC switch set
and the other would correspond to the KCMX switch set. Then, by separating the
specifications into separate libraries, depending on the implementation desired,
different specification libraries could be used.

The new C implementation could be written in many ways. One possibility
would be to create a C implementation of task that also used a compiler switch to
determine which set of tasks to use. Another alternative might be to create separate

45

NAVSWC TR 91-388

CSWITCH EDC" RCINSUCPINC 2370 " $
BEGIN IOWN, 1053, WCHP, IOED, SACT, DCCN, RCMC
"RESPONSE FROM NON-NAV DEPENDENT TASKS" $

END-CSWITCH EDC" RCINSUCPINC 2370" $

CSWITCH KCMX" RCINSUCPINC 2370" $
BEGIN IOWN, 1053, WCHP, IOKC, SACT, DCCN, RCMC
"RESPONSE FROM NON-NAV DEPENDENT TASKS" $

END-CSWITCH KCMX" RCINSUCPINC 2370" $

reduces to:

else if TASKis of _type (TSDgetsendtaskid (tsd),
tasktype NNAV) then

FIGURE 28. A CMS-2 COMPILER SWITCH AND HOW IT WAS RESPECIFIED

C implementations for the task trait that would correspond to the two specifications.
Like the specifications, the different implementations could be kept in separate
libraries that could be chosen at compilation time. It would even be possible, though
probably not desirable, to create an implementation that was similar to the original
CMS-2 implementation, in which a compiler switch was used in the main procedure
to choose the task set to be used.

EVALUATION OF RESULTS

The results of this research were useful in providing better understanding of the
benefits from reengineering CMS-2 software to C using Larch specifications as an
intermediate form. The experience gained in the reengineering process was valuable
for developing a complete reengineering methodology. The specifications gained
through reengineering provided a better understanding of the system. The C
implementation provided a realistic sample of reengineered code. Due to the scope of
the project, the results were by no means complete, but they were a considerable
increase in existing knowledge.

The Reengineering Experience

The results of applying the reengineering process to the RCINSUCC procedure
are given in the methodology described in Chapters 4 and 5. Applying the process
provided insights into how automation could be used. It also helped improve the
author's understanding about how to logically represent software. Performing the
reengineering was useful for determining the specific challenges that were involved
and the areas that need further study.

46

NAVSWC TR 91-388

The Specifications

The goal of providing new documentation and improving system understanding
was achieved through the composition of the Larch specifications obtained through
reverse engineering. The LSL specifications were useful for providing a better
understanding of data use and its implementation independent representation. The
LCL procedural specifications were useful for improving understanding of the
functionality of the original CMS-2 procedure and the new C implementation. By
abstracting implementation details and functional complexity into the LSL
specifications, the procedural LgL specifications were made simpler. This made
them more easily understandable and made resulting implementations more
maintainable.

The New Implementation

The C implementations of the LCL procedural specifications were useful for
comparison to the CMS-2 implementation and the Larch specifications. It showed
how improved specifications of the CMS-2 code could lead to improved C
implementations. The reimplementation process also showed how many different C
implementations were possible based on the Larch specifications.

The new C implementation was not executable because many of the data
abstractions that the new RCINSUCC implementation used, was not completely
reverse engineered, and thus could not be reimplemented. Even if all of the data
abstractions had been reimplemented and stubs were used to simulate interaction
with other system procedures, running this code would not have provided useful
performance information. To gain accurate information about how the new
implementation performed, compared to the old implementation, it would be
necessary to test the implementation of a much larger part of the system, if not the
entire system itself.

Scope Limitations

The extreme interrelation in the ASWCS MK 116 MOD 7 made it infeasible to
completely reengineer most of its procedures given the scope of this project. For the
RCINSUCC procedure, it was possible to produce LCL specifications and C code for
the procedure. It was not possible to completely reengineer all of the data
abstractions that the RCINSUCC procedure used and the other system procedures
and functions that it called, because of time constraints. Instead, only some of the
data abstractions were fully defined using LSL and LCL specifications, and then
reimplemented in C. From these examples, it was possible to draw some conclusions
about the reengineering process and methodology used.

A smaller example was considered for this project but was not chosen because it
would not have yielded as meaningful results. A smaller self-contained example that
could be completely reengineered would have provided a more complete view of the
reengineering process but would not have provided as good a characterization of what
it would be like to reengineer most of the system. Smaller examples were also less
likely to have as many interesting and diverse cases as larger ones.

47/48

NAVSWC TR 91-388

CHAPTER 7

CONCLUSION

The research performed was successful in that it accomplished its goals, was a
good learning experience, and provided a basis for future research. A reengineering
methodology that addressed systems issues was developed and experimentally
investigated. There were many lessons learned about the reengineering process,
formal specification using Larch, CMS-2, and data abstraction. This research also
provided a basis for further research in reengineering, specifically in the area of
automation. In drawing these conclusions though, it is important to consider biases
that may have been introduced due to the researcher's background.

ACCOMPLISHMENTS

The research goals of developing a reengineering methodology that dealt with
systems issues was accomplished by this project. The methodology was developed
through the experimentation with a reengineering process, and systems issues were
addressed by the reengineering example chosen. An intermediate representation
was also used, and important insights were gained about it. Where automation
might be applied to improve reengineering process was also considered.

Experimenting with Larch specifications as an intermediate design
representation provided great insights into the requirements of design
representations and their usefulness. The characteristics on which the Larch family
of specification languages was chosen turned out to be important. In particular,
flexibility, understandability, automated checking support, and a two-tiered
structure were useful in managing the complexities associated with reengineering.

Knowledge of where automation techniques could best be applied was also
gained. Manually performing analysis, substitution, and consistency maintenance,
provided a strong sense of what processes would best be automated and how a
reengineering environment should be constructed. Based on this research, another
report is in the process of being written, which discusses the functional requirements
of reengineering tools and a support environment.24

LESSONS LEARNED

There were many lessons learned as a result of this research: (1) discovery of
how complex actual existing systems could be, (2) the need for numerous iterations in
the reengineering process, and (3) the need for expertise in the languages and
systems used. The complexity of the system used in the experiment was much
greater than was initially thought. In particular, the amount of coupling within the
system, the complexity of the programming language and operating environment,
and the difficulty of understanding the documentation were unexpected.

49

NAVSWC TR 91-388

It was also not clear that reengineering would be such an iterative process. It
was expected that data analysis and recomposition could be performed
simultaneously. In reality, it was necessary to perform many changes in these
phases to obtain the most accurate data abstractions. The need for many of these
changes was driven by new data analysis information and the effects of changes that
had been made elsewhere in the analysis or recomposition phases.

The need for expertise in the source language, the target language, the
intermediate representation, and the existing system were all underestimated. It is
critical that the source language and intermediate representation be understood
extremely well by the persons(s) reverse engineering the system so functionality of
the existing software can be correctly interpreted and expressed. Similarly, the
person(s) forward engineering the new system must have a firm understanding of the
target language and the intermediate representation so that they can implement the
software's representation effectively and accurately.

It is unclear whether it would be beneficial to have the reengineer have
expertise with the system being reimplemented. On the one hand, it would be helpful
for speeding the reverse engineering process and to better capture the system's
intent. On the other hand, the respecification could be easily biased by over-
familiarity with the original implementation. It might be best to have a reverse
engineer who is less familiar with the system but who is in close consultation with
the previous system maintainers.

FUTURE DIRECTIONS

There are several extensions of this research that would be useful for improving
this reengineering process. One extension would be to perform more in depth
research on techniques that could be applied to the different phases of the reverse and
forward engineering processes. Developing a set of automated tools and a support
environment would make the reengineering process more efficient. Performing a
larger scale reengineering project would also be extremely beneficial for addressing
topics that this research did not.

Each of the phases in the reengineering processes is a research topic in itself.
These topics include source code complexity analysis, data analysis, data mapping,
and code generation. The data analysis and data mapping are two primary areas that
need to be researched since they are critical to the reverse engineering process. These
two areas are necessary for the formulation of an accurate and useful design
representation of software.

Developing tools that will aid in analysis and composition is also important for
making reengineering an effective and efficient process. Creating a suitable
reengineering environment that integrates these tools is another challenge that must
be addressed. Much of the need is in developing interfaces that will allow effective
manipulation of data and aid in decision support.

While this project was useful for determining basic information, it is necessary
to completely reengineer an existing system to better understand the reengineering
process. Since this is a fairly large undertaking, it is the next logical step in the
course of this research. Reengineering an entire system would provide better insight
to some of the system level concerns that were not fully addressed by this research.

50

NAVSWC TR 91-388

Considerable gains in understanding reengineering were made by developing a
methodology and reengineering part of a system. Further gains will be made by
reengineering an entire system, and then by reengineering multiple systems. But
even then, it will not be clear how useful reengineering is until extensive
maintenance has been performed on these reengineered systems. This research
suggests that reengineering has great potential, but only time and experience will
tell.

RESEARCH BIASES

In examining this work and its conclusions, it is helpful to know the author and
researcher's background to better understand what biases might have been present.
The researcher has a bachelors degree in computer science and has been working in
the area of reengineering for slightly over a year. He has four years of programming
experience in C, practically no CMS-2 programming experience, little background in
formal methods and logic, and no experience with the ASWCS MK 116 MOD 7. The
author has worked extensively with data abstraction and specification principles.

The reengineering process was aided by the author's understanding of data
abstraction and specification. Likewise, it was useful to have a strong background in
computer science and a fairly good grasp of the issues involved in reengineering. The
C programming experience was helpful in the forward engineering process and in
understanding LCL.

Lack of experience with CMS-2, Larch, and the ASWCS MK 116 MOD 7 was a
considerable hindrance in the reengineering process. Not fully understanding CMS-2
and the ASWCS MK 116 MOD 7 often made it difficult to understand why certain
design choices had been made. Lack of experience in writing formal specifications
required extensive correction of specifications to improve their accuracy and
precision.

51/52

NAVSWC TR 91-388

REFERENCES

1. Brown, Patrick, "Program Understanding Tools for Systems Software,"
Transactions from the Second Annual Systems Reengineering Workshop,
Mar 1991, pp. 126-135 (to be published).

2. Zwick, Morris J., "ASWCS 116/7 Automatic Database Design Document
Generator," Transactions from the Second Annual Systems Reengineering
Workshop, Mar 1991, pp. 155-159 (to be published).

3. Bush, Eric, "The Automatic Restructuring of Cobol," Proceedings of the
Conference on Software Maintenance, 1985, pp. 35-41.

4. Williams, M. H., and Ossher, H. L., "Conversion of Unstructured Flow
Diagrams to Structured Form," Computer J., Vol. 21, No. 2, May 1978, 161-167.

5. Chikofsky, Elliot J., and Cross, James H. II, "Reverse Engineering and Design
Recovery," IEEE Software, Jan 1990, pp. 13-17.

6. Moore, Tamra, and Gibson, Katherine, Reengineering of Navy Computer
Systems, NAVSWC TR 90-216, Naval Surface Warfare Center, Silver Spring,
MD (to be published).

7. Bruno, Jeanette M., "An Interactive Approach for Improving Control Flow In
An Environment for Code Re-Engineering," Transactions from the Second
Annual Systems Reengineering Workshop, Mar 1991, pp. 150-154 (to be
published).

8. Duran, Randall E., "Reengineering CMS-2 Software Using Larch
Specifications," Transactions from the Second Annual Systems Reengineering
Workshop, Mar 1991, pp. 117-125 (to be published).

9. Prywes, N., Ge, X., and Andrews, S., "Automation of Conversion of Real-Time
Software in CMS-2 into Ada," Transactions from the Second Annual Systems
Reengineering Workshop, Mar 1991, pp. 81-88, (to be published).

10. User Handbook For CMS-2 Compiler, Rev. 3, NAVSEA 0967-LP-598-8020,
1990.

11. Gusaspari, D., Marceau, C., and Polak, W., "Formal Verification of Ada
Programs," IEEE Transactions on Software Engineering, Vol. 16, No. 9,
Sep 1990.

12. Guttag, J. V., and Horning, J. J., "Introduction to LCL, A Larch/C Interface
Language," (to be published).

53

NAVSWC TR 91-388

REFERENCES (CONT.)

13. Garland, S. J., and Guttag, J. V., "An Overview of LP, the Larch Prover," Proc.
3rd Int. Conf. Rewriting Techniques and Applications, Apr 1989. pp. 137-151.

14. Garland, S. J., Guttag, J. V., and Horning, J. J, "Debugging Larch Shared
Language Specifications," IEEE Transactions on Software Engineering, Vol. 16,
No. 9, Sep 1990, pp. 1044-1057.

15. American National Standards Institute, Information Systems - Programming
Language - C, X3.159.

16. Kernighan, Brian, and Ritchie, Dennis, The C Programming Language,
Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1978.

17. McCabe, T. J., "A Complexity Measure," IEEE Transactions on Software
Engineering, Vol. SE-2 No. 4, Dec 1976, pp. 308-320.

18. McCabe, T. J., and Butler, C. W., "Design Complexity Measurement and
Testing," Communications of the ACM, Vol. 32, No. 12, Dec 1989, pp. 1415-
1425.

19. Podgurski, A., and Clarke, L. A., "A Formal Model of Programming
Dependencies and Its Implications for Software Testing, Debugging, and
Maintenance," IEEE Transactions on Software Engineering, Vol. 16, No. 9,
Sep 1990, pp. 965-979.

20. Wilde, N., and Huitt, R., "A Reusable Toolset for Software Dependency
Analysis," Journal of Systems and Software, Vol. 14, No. 2, Feb 1991,
pp. 97-103.

21. Wilde, N., and Nejmeh, B., Dependency Analysis: An Aid for Software
Maintenance, SERC-TR-26-F, Software Engineering Research Center,
University of Florida, Gainsville, FL, Jan 1988.

22. Dijkstra, Edsger W., "Guarded Commands, Nondeterminancy and Formal
Derivation of Programs," Communications of the ACM, Vol. 18, No. 8,
Aug 1975.

23. Hoare, C. A. R., "Communicating Sequential Processes," Communications of the
ACM, Vol. 21, No. 8, Aug 1978.

24. Duran, Randall E., A Functional Specification of Reengineering Tools and a
Reengineering Environment, NAVSWC TR 91-390, Naval Surface Warfare
Center, Silver Spring, MD (to be published).

54

NAVSWC TR 91-388

BIBLIOGRAPHY

American National Standards Institute, Information Systems - Programming
Language - C, X3.159.

Brown, Patrick, "Program Understanding Tools for Systems Software," Transactions
from the Second Annual Systems Reengineering Workshop, Mar 1991, pp. 126-135 (to
be published).

Bruno, Jeanette M., "An Interactive Approach for Improving Control Flow In An
Environment for Code Re-Engineering," Transactions from the Second Annual
Systems Reengineering Workshop, Mar 1991, pp. 150-154 (to be published).

Bush, Eric, '"The Automatic Restructuring of Cobol," Proceedings of the Conference on
Software Maintenance, 1985, pp. 35-41.

Chikofsky, Elliot J., and Cross, James H. I1, "Reverse Engineering and Design
Recovery," IEEE Software, Jan 1990, pp. 13-17.

Dijkstra, Edsger W., "Guarded Commands, Nondeterminancy and Formal Derivation
of Programs," Communications of the ACM, Vol. 18, No. 8, Aug 1975.

Duran, Randall E., A Functional Specification of Reengineering Tools and a
Reengineering Environment, NAVSWC TR 91-390, Naval Surface Warfare Center,
Silver Spring, MD (to be published).

Duran, Randall E., "Reengineering CMS-2 Software Using Larch Specifications,"
Transactions from the Second Annual Systems Reengineering Workshop, Mar 1991,
pp. 117-125 (to be published).

Garland, S. J., and Guttag, J. V., "An Overview of LP, the Larch Prover," Proc. 3rd
Int. Conf. Rewriting Techniques and Applications, Apr 1989, pp. 137-151.

Garland, S. J., Guttag, J. V., and Horning, J. J, "Debugging Larch Shared Language
Specifications," IEEE Transactions on Software Engineering, Vol. 16, No. 9,
Sep 1990, pp. 1044-1057.

Gusaspari, D., Marceau, C., and Polak, W., "Formal Verification of Ada Programs,"
IEEE Transactions on Software Engineering, Vol. 16, No. 9, Sep 1990.

Guttag, J. V., and Horning, J. J., "Introduction to LCL, A Larch/C Interface
Language," (to be published).

55

NAVSWC TR 91-388

BIBLIOGRAPHY (CONT.)

Guttag, J. V., Horning, J. J., and Modet, A., Report on the Larch Shared Language
Version 2.3, Digital Equipment Corporation Systems Research Center Report 58,
Apr 1990.

Guttag, J. V., Horning, J. J., and Wing, J. M., "The Larch Family of Specification
Languages," IEEE Software, Sep 1985.

Hoare, C. A. R., "Communicating Sequential Processes," Communications of the
ACM, Vol. 21, No. 8, Aug 1978.

Kernighan, Brian, and Ritchie, Dennis, The C Programming Language, Prentice-
Hall, Inc. Englewood Cliffs, New Jersey, 1978.

Liskov, B., and Guttag, J. V., Abstraction and Specification in Program Development,
MIT Press/McGraw-Hill, 1986.

McCabe, T. J., "A Complexity Measure," IEEE Transactions on Software
Engineering, Vol. SE-2 No. 4, Dec 1976, pp. 308-320.

McCabe, T. J., and Butler, C. W., "Design Complexity Measurement and Testing,"
Communications of the ACM, Vol. 32, No. 12, Dec 1989, pp. 1415-1425.

Moore, Tamra, and Gibson, Katherine, Reengineering of Navy Computer Systems,
NAVSWC TR 90-216, Naval Surface Warfare Center, Silver Spring, MD (to be
published).

Podgurski, A., and Clarke, L. A., "A Formal Model of Programming Dependencies
and Its Implications for Software Testing, Debugging, and Maintenance," IEEE
Transactions on Software Engineering, Vol. 16, No. 9, Sep 1990, pp. 965-979.

Prywes, N., Ge, X., and Andrews, S., "Automation of Conversion of Real-Time
Software in CMS-2 into Ada," Transactions from the Second Annual Systems
Reengineering Workshop, Mar 1991, pp. 81-88, (to be published).

User Handbook For CMS-2 Compiler, Rev. 3, NAVSEA 0967-LP-598-8020, 1990.

Virrell, A. D., Guttag, J. V., Horning, J. J., and Levin, R., Synchronization Primitives
for a Multiprocessor: A Formal Specification, Digital Equipment Corporation
Systems Research Center Report 20, Aug 1987.

Wilde, N., and Huitt, R., "A Reusable Toolset for Software Dependency Analysis,"
Journal of Systems and Software, Vol. 14, No. 2, Feb 1991, pp. 97-103.

Wilde, N., and Nejmeh, B., Dependency Analysis: An Aid for Software Maintenance,
SERC-TR-26-F, Software Engineering Research Center, University of Florida,
Gainsville, FL, Jan 1988.

Williams, M. H., and Ossher, H. L., "Conversion of Unstructured Flow Diagrams to
Structured Form," Computer J., Vol. 21, No. 2, May 1978, 161-167.

56

NAVSWC TR 91-388

BIBLIOGRAPHY (CONT.)

Wing, J. M., "Using Larch To Specify Avalon/C + + Objects," IEEE Transactions on
Software Engineering, Vol. 16. No. 9, Sep 1990.

Zwick, Morris J., "ASWCS 116/7 Automatic Database Design Document Generator,"
Transactions from the Second Annual Systems Reengineering Workshop, Mar 1991,
pp. 155-159 (to be published).

57

NAVSWC TR 91-388

APPENDIX A

THE RCINSUCC PROCEDURE

COMMENT [BRIEF DESCRIPTION OF PROCEDURE:.
THIS PROCEDURE IS THE SUCCESSOR ENTRANCE CONTROL PROCEDURE
THAT PROCESSES THE SUCCESSOR ENTRANCE REQUIREMENTS FOR
INITIALIZATION PROCESSING.
I$

COMMENT
BEGIN RCINSUCP
* store scheduling packet in local storage
* DOCASE based on successor data packet
* CASE 1: initialization complete message

DOCASE based on requesting task
.. CASE 1: responding task is DBXC
.. clear DBXC time-out indicator

... IF DBXC initialized properly

... THEN
CSWITCH CALCLOCK

... IF state flag is set to warm

.... THEN

...... IF there was an operator date time input

...... THEN

....... Set Current Time Clock to temp GMT + Current \ Time Clock Delta

....... Set GMT to temp GMT

....... call SSTIMEAS to convert Current Time Clock in \ seconds to DDHHMMss
MMssYYss format

....... call SSBCDTAG to convert time to BCD

....... call SSBCDTAG to convert date to BCD

....... format the date returned to sYMD

....... call RSETCCC to set the Calendar Clock Card to \ the operator input date
and time

...... ELSE

....... Set Current Time Clock to output of RASC 1985

....... Set GMT to the difference between GMT and Current Time Clock delta

...... ENDIF

.... ELSE
...... Set Current Time Clock Delta to zero
...... Set Current Time Clock using temp GMT
.... ENDIF
.... set IOC prior PV to Real Time Clock (requested \ by ESCP to be done here

as the IOC is tied to the \ last time the CTC is updated)
.... set Calibration Factor I to remainder of the GMT divided by number of

seconds in I day - RTC (req by ESCP to maintain a GMT
with milliseconds)

*.... set Calibration Factor 2 to Calibration Factor 1
.... set previous IOC RTC calue to IOC RTC

A-1

NAVSWC TR 91-388

END-CSWITCH CALCLOCK
*.... set DBXC task initialized in the task \ initialization table
.... set count of initialized tasks to 1
.... IF initialization character was "C"
S.... THEN
...... set system mode word to tactical and the \ submodes to w/o
...... store system mode in the initialiazation \ message
...... call DBSMODE to store system mode in the \ database

S.... ELSE character was "A", "B" or "W"
...... call DBRMODE to retrieve system mode from\ the database
...... store system mode in the initialization \ message
.... ENDIF initialization character
.... call SSXTRACT to extract the executive \ status data
.... reset the restart character in the ATES \ table to "A"
.... call EXSYSTRN to save the new \ initialization character
.... set periodic flag to "IOCD" timeout
.... call EXBEGPER to start RCIN initialization \ timer at 5 seconds
S.... queue IOCD at its initalization entrance \ with the date/time message
... ELSE DBXC did not initialize properly
*.... call EXDERS with point 29
S.... queue AMCN with critical, non-override task \ failure
*.... queue SD67 with critical, non-override task \ failure
.... queue RCTM with termination message
... ENDIF DBXC initialized ok
. . CASE 2: responding task is IOCD
... call EXSTOPER to stop periodic scheduling \ for IOCD timeout
... set IOCD task initialized in the task \ initialization table
... increment count of initialized tasks
... set RCIN message buffer to initialization \ complete message
... queue RCIN at its successor entrance
. . CASE 3: responding task is RCIN
... IF invocation reason is RCIN init complete message
... THEN
S.... call SSGETTIM to get initialization time
S.... set periodic flag to "all others" responding
*.... set in progress flag for 30 second timer
.... call EXBEGPER to start RCIN initialization \ timer at 30 seconds
.... DOUNTIL GROUPI tasks in the initalization \ table have been queued
...... queue each task with initialization \ messsage at their initialization \ entrance
.... ENDDO
... ELSE (5 second timer has elapsed)
.... IF timed out indicator is not cleared
*.... THEN (DBXC failed to respond)
...... set QPERFLG to critical task failed
...... set failed count to I
...... call RCINFAIL to process response failure
.... ELSE
...... task responded before time elapsed (DO NOTHING)
.... ENDIF
... ENDIF
* CASE 2: initialization response message from \other tasks
. DOUNTIL initialization table is searched

... IF task id equals task id in data packet

... THEN

A-2

NAVSWC TR 91-388

*.... IF the response indicates a successful \ intialization
.... THEN
..... set the active field for the task
..... DOCASE base on responding task ID
..... CASE I response from NVCN
...... IF periodic is in NVCN timeout mode
...... THEN
....... call EXSTOPER stop periodic
...... ENDIF
...... set periodic flag to NAV-dependent IOs
...... start periodic for 2 second timeout
...... queue NAV dependent 1/0 tasks with \ initialization message
..... CASE 2 response from NAV-dependent task
...... increment NAV dependent task counter
...... IF task is critical IOCD
...... THEN
....... decrement NAV dependent task counter
...... ENDID
...... IF NAV dependent task counter indicates all \ tasks answered
...... THEN
....... stop periodic processing for two second \ timeout
....... IF 30 second timer has not expired
....... THEN
........ set periodic flag back to "all others"
........ get current time
........ calculate time left for 30 sec timer
........ call EXBEGPER to restart periodic
....... ENDIF
...... ENDIF
..... CASE 3 response from all non-NAV dependent \ tasks
...... increment task initialization counter
...... IF the task initialization counter indicates \ all tasks initialized
...... THEN
....... call EXDERS with point 29
....... IF two second timer is in progress
....... THEN
........ clear 30 sec. in progress flag (QINPROG)
....... ELSE
........ call EXSTOPER to stop the periodic \processing for RCIN
....... ENDIF
....... IF initialization character is "A"
....... THEN
........ queue AMCN with auto reload complete \ message
....... ENDIF initialization character
....... queue SACT at its successor entrance with \ initialization complete
....... queue SD67 at its successor entrance with \ initialization complete
....... call SSTYPEIT with initialization complete
...... ENDIF all tasks initialized
..... ENDCASE
..... ENDIF
.... ENDIF successful initialization
... ENDIF proper task id
. ENDDO search initialization table
CASE 3: SD67 "NO" or "GO"

A-3

NAVSWC TR 91-388

. IF "NO" is received from SD

. THEN
... set termination flag in the task data base
... queue RCTM with termination request, \ non-critical task failure
.. ELSE "GO" received from SD
... IF initialization character is "A"
... THEN
.... queue AMCN with auto reload complete \ message
... ENDIF initialization character
... queue SACT at its successor entrance with \ initialization complete
... queue SD67 at its successor entrance with \ initialization complete
... call SSTYPEIT with initialization complete
*. ENDIF answer from SD
* CASE 4: "software execption"
.. call SSLOGERR to issue software exception \ message
.ENDCASE
. call EXEXIT to exit successor entrance
END RCINSUCC

IS
COMMENT ((EJECT$
(EXTDEF) PROCEDURE RCINSUCC $

LOC-INDEX QLNDXA,QLNDXB "LOCAL INDEX" $
SET QDATAPK(0,0) TO GNSCHPKT(QDUM,ASWSCW) $
SET QDATAPK(0,1) TO GNSCHPKT(QDUM,SDW) $
FOR QDATAPK(O,MSGID)
ELSE "CASE 4"

BEGIN $
SSLOGERR INPUT II(RCINSUCC),QDATAPK(0,MSGID),0 $
END "END CASE 4" $
BEGIN GNMINIT "CASE 1 - COMPLETE RCIN INIT.

REQUEST" $
FOR QDATAPK(O,SENDTSK)
ELSE

BEGIN "CASE 4 - EXCEPTION CASE" $
SSLOGERR INPUT H(RCINSUCC),

QDATAPK(O,SENDTSK),O $
END$

BEGIN DBXC "CASE I - RESPONSE TASK IS DBXC" $
SET QTIMEOUT TO 0 $
IF GNSCHPKT(QDUM,INITSTAT) EQ QOK
THEN "DBM INITIALIZATION OK"

BEGIN $
CSWITCH CALCLOCK $

IF QMOOO(O,RFLAG) EQ 0
THEN

BEGIN $
IF QOPENTRY EQ 1
THEN

BEGIN $
SET QSETCCC TO 0 $
SET QTTIME6(0,QCTC) TO QGMTTEMP $
SET QTTIME6(0,QDATGMT) TO QGMTTEMP $
SET QTTIME6(0,QDELTA) TO 0 $

A-4

NA VS WO TR 9 1-388

SET QTTIME6(0,QDELTAMS) TO 0 $
SSTIMEAS INPUT QTTIME6(0,QCTC)

OUTPUT QOUT1,QOUT2 $
RTAGBCD INPUT QOUTI OUTPUT QTEMTIME $
SET CHAR(0,2)(QSETCCC(0,BCDTIME)) TO

CIIAR(2,2)(QTEMTIME) $
RTAGBCD INPUT QOUT2 OUTPUT QTEMDATE $
"FORMAT TO sYMD TO SET CCC"$
SET CHAR(I ,3)(QSETCCC(O,BCDDATE)) TO

CHAR(1 ,3)(QTEMDATE) $
SET EXB1 TO CORAD(QSETCCC) $
EXEC 60$

END$
ELSE

BEGIN $
SET QTTIME6(O,QCTC) TO QGMTTEMP $
SET QTTIME6(O,QDATGMT) TO QGMTTEMP $
SET QTTIME6(0,QDELTA) TO 0 $
SET Q¶ITIME6(O,QDELTAMS) TO 0 $

END$
END$

ELSE
BEGIN $

SET QTTIME6(0,QDELTA) TO 0 $
SET QTI'IME6(0,QDATGMT) TO QGMTTEMP $
SET QTTJM-,E6(0,QCTC) TO QGMTTEMP $

END $
"EN DI F" $
SET QTTIME6(0,QPIOC) TO QRTC $
SET QCLKGMT6(0,CALFACI) TO REM(QGMTTEMP/86400)

- QRTCMS/1000 $
SET QCLKGMT6(0,CALFAC2) TO QCLKGMT6 (0,CALFACl) $
SET QCLKGMT6(0,PIOCRTC) TO QRTC $

END-CS WITCH CALC LOCK $
SET MZTSKINI(0,INIT) TO MZINIT $
SET QCNTITOI1 $
IF QMOOO(0,RFLAG) EQ QCOLD
THEN

BEGIN "COLD START" $
SET QMOOO(0,SMODE) TO GNNORMAL $
SET QMOOO(0,SUBMODE) TO GNNORMAL, $
SET QMODE TO GNNORMAL "SET MODE TO TACT" $
SET QSMODE TO QNONE "NO SUBMODE FOR TACT" $
DBSMODE INPUT QMODE,QSMODE OUTPUT QSTAT $
END "COLD START" $

ELSE
BEGIN "WARM START" $
DBRMODE OUTPUT QSTAT,QMODE,QSMODE,QENG $
SET QMOOO(0,SMODE) TO QMODE "CURRENT SYST MODE" $
SET QMOOO(O,SUBMODE) TO QSMODEO "AND SUBMODE" $

END "WARM START" $
SSXTRACT IN PUT QXSTAT "GET THE EXEC STAT DATA" $
SET QATESPK(0,ICHAR) TO H(A) "AUTO WARM RELOAD" $
EXSYSTRN INPUT QSAVE "SAVE THE NEW INIT CHAR" $

A-5

NAVSWC TR 91-388

COMMENT MOVE DATA FROM LOCAL TABLE TO CONTEXT AREA TABLE $
SET QRCTIME6 TO QMMANTIM $
SET QPERFLG TO QIOCD $
EXBEGPER INPUT 5120,RCIN $
EXQUEUE INPUT IOCD,GNINIT,GNMINIT,QMOOO(0,0) $
END "DBM INITIALIZATION OK" $

ELSE "DBM INITIALIZATION FAILED"
BEGIN $
SET QMTERMRQ(0,REQ) TO QRCIN $
SET QMTERMRQ(O,FAILTYPE) TO QDBM $
SET QAMCNBUF(0,ALERTID) TO QFAIL $
EXDERS INPUT 29,0,0 "SYSTEM DERS POINT" $
EXQUEUE INPUT AMCN, GNSUCC, GNALERT, CORAD (QAMCNBUF) $
EXQUEUE INPUT SD67,GNSUCCMZTERMRQ,QMTERMRQ(0,0) $
EXQUEUE INPUT RCTM,GNSUCC,MZTERMRQ,QMTERMRQ(0,0) $
END "DBM INITIALIZATION FAILED" $

"ENDIF" $
EXDERS INPUT 601,0,0 "SYSTEM DERS POINT" $
END "CASE I - RESPONSE TASK IS DBXC" $
BEGIN IOCD "CASE 2 - RESPONSE FROM IOCD' $
EXSTOPER INPUT RCIN $
SET MZTSKINI(1,INIT) TO MZINIT $
SET QCNT1 TO QCNTI + 1 $
SET QRCINVOK(0,REASON) TO 0 $
EXQUEUE INPUT RCIN,GNSUCC,GNMINIT,QRCINVOK(0,0) $
END "CASE 2 - RESPONSE FROM IOCD" $
BEGIN RCIN "CASE 3- RESPONSE FROM RCIN" $
IF QDATAPK(0,RCREASON) EQ 0
THEN

BEGIN "RCIN initialization message" $
SSGETTIM OUTPUT QINISTRT $
SET QPERFLG TO QOTHERS $
SET QINPROG TO I $
EXBEGPER INPUT 30720,RCIN $
VARY QLNDXA WITHIN MZGROUP1 $
EXQUEUE INPUT MZGROUPI (QLNDXA,TASK),GNINIT,

GNMINITQMOOO(0,0) $
END "VARY" $
END "RCIN initialization message" $

ELSE
BEGIN "DBXC 5 SEC TIMER ELAPSED" $
IF QTIMEOUT
THEN

BEGIN "DBXC FAILED TO RESPOND" $
SET QPERFLG TO QDBXC $
SET QFLCNT TO 1 $
RCINFAIL $
END "DBXC FAILED TO RESPOND" $

END "DBXC 5 SEC TIMER ELAPSED" $
"ENDIF" $
END "CASE 3 - RESPONSE FROM RCIN" $

END "FOR" $
END "CASE 1 - RCIN INIT. COMPLETION" $
BEGIN GNMINITR "CASE 2 - INIT. RESPONSE MESSAGE" $

A-6

NAVSWC TR 9 1-388

VARY QLNDXA WITHIN MZTSKINI $
IF QDATAPK(ODSENDTSK) EQ MZTSKINI(QLNDXA,TASK)
THEN

BEGIN "SENDING TASK ID CHECK" $
IF QDATAPK(O,INITSTAT) EQ QOKI NIT
THEN

BEGIN "SUCCESSFUL INITIALIZATION"'$
SET MZTSKINI(QLNDXA,INIT) TO MZINIT $
FOR QDATAPK(0,SENDTSK)
ELSE "CASE 4"

BEGIN $
SSLOGERR INPUT H(RCINSUCC), QDATAPK(0,MSGID),0 $
END "END CASE 4" $
BEGIN NVCN "RESPONSE FROM NVCN" $
IF QPERFLG EQ QNVCN
THEN

BEGIN "NVCN TIMEOUT ACTIVE" $
EXSTOPER INPUT RCIN $
END "NNCN TIMEOUT ACTIVE" $

IF QPERFLG EQ QNVCNB
THEN

BEGIN "NAV DATA AVAILABLE" $
SET QPERFLG TO QNAVIOS $
EXBEGPER INPUT 2048, RCIN $
VARY QLN`DXB WITHIN MZGROUP2 $

EXQUEUE INPUT MZGROUP2(QLNDXBTASK),
GNINIT,GNMINIT,QMOOO(0,0) $

END "VARY" $
END "NAV DATA AVAILABLE" $

ELSE
SET QPERFLG TO QNVCNB $

END "RESPONSE FROM NVCN" $
BEGIN 1019,1028,IOCD "NAV DEPENDENT I/Os" $
SET QCNT2 TO QCNT2 +1 $
IF MZTSKINI(QLNDXiA,TASK) EQ IOCD AND MZTSKINI

(QLNDXA,CRIT) EQ 1
THEN

SET QCNT2 TO QCNT2 - 1 $
"ENDIF"
IF QCNT2 EQ MZNAVTSK
THEN

BEGIN "ALL NAV-DEPENDENT I/Os RESPONDED" $
EXQUEUE INPUT SACT,GNSUCC,MZINITNV, QMOOO(O,O) $
EXSTOPER INPUT RCIN $
IF QINPROG
THEN

BEGIN "RESTART PERIODIC" $
SET QPERFLG TO QOTHERS, $
SSGETTIM OUTPUT QIODONE $
SET QTIMLE~FT TO

1O24*(3O..(QIODONE-QINISTRT)) $
IF QTIMLEFT GT 0
THEN

EXBEGPER INPUT QTIMLEFT, RCIN $

A-7

NAVSWC TR 91-388

ELSE
EXBEGPER INPUT I, RCIN $

"ENDIF" $
END "RESTART PERIODIC" $

END "ALL NAV-DEPENDENT I/Os RESPONDED" $
END "NAV-DEPENDENT I/Os" $

CSWITCH EDC "RCINSUCPINC 2370" $
BEGIN IOWN,I053,WCIHP,IOED,SACT,DCCN,RCMC
"RESPONSE FROM NON-NAV DEPENDENT TASKS" $

END-CSWITCH EDC "RCINSUCP INC 2370" $
CSWITCH KCMX "RCINSUCPINC 2370" $

BEGIN IOWN,1053,WCHP,IOKC,SACT,DCCN,RCMC
"RESPONSE FROM NON-NAV DEPENDENT TASKS" $

END-CSWITCH KCMX "RCINSUCP INC 2370" $
SET QCNT1 TO QCNTI + 1 $
IF QCNT1 EQ MZINITSK
THEN

BEGIN 'TASK INIT. COUNT COMPLETED" $
EXSTOPER INPUT QTASK $
IF MZTSKINI(9,INIT) EQ MZNOINIT
THEN

BEGIN "RESTART TIMEOUT FOR NVCN" $
SSGETTIM OUTPUT QIODONE $
SET QPERFLG TO QNVCN $
SET QTIMLEFT TO

1024*(30-(QIODONE-QINISTRT)) $
EXBEGPER INPUT QTIMLEFT, RCIN $
END "RESTART PERIODIC FOR NVCN" $

EXDERS INPUT 29,0,0 "SYSTEM DERS POINT"$
SET QINPROG TO 0 $
IF QM000(0,1NITCH) EQ H(A)
THEN

BEGIN $
SET QAMCNBUF(0,ALERTID) TO QREL $
EXQUEUE INPUT AMCN, GNSUCC, GNALERT,

CORAD(QAMCNBUF) $
END $

EXQUEUE INPUT SACT,GNSUCC,MZINITOK,
QMOOO(0,0) $

EXQUEUE INPUT SD67,GNSUCC,MZINITOK,
QMOOO(0,0) $

SSTYPEIT INPUT CORAD(QOCD(QICM,TEXT)),7 $
END "TASK INIT. COUNT CHECK" $

END "RESPONSE FROM NON-NAV DEPENDENT TASKS" $
END "FOR" $
END "SUCCESSFUL INITIALIZATION" $

END "SENDING TASK ID CHECK" $
END "VARY" $
END "END CASE 2 - INITIALIZATION RESPONSE MESSAGE" $
BEGIN MZIFRMID "CASE 3 - INIT. FAIL RESPONSE" $
IF QDATAPK(0,OFAIL) EQ QNOGO
THEN "NO RECEIVED FROM SD67"

BEGIN $

SET QTMFG TO 1 $

A-8

NA VS WO TR 9 1-388

SET QMTERMRQ(O,REQ) TO QRCIN $
SET QMTERMRQ(O,FAILTYPE) TO QNCRT $
EXQUEUE INPUT RCTMGNSUCC,MZTERMRQ,QMTERMRQ(O,O) $
END "NO RECEIVED FROM SD67" $

ELSE "GO RECEIVED FROM SD67"
BEGIN $
IF QMOOO(O,IN ITCH) EQ H(A)
THEN
BEGIN $

SET QAMCNBUF(O,ALERTID) TO QREL $
EXQUEUE INPUT AMCN, GNSUCC, ONALERT,
CORAD(QAMCNBUF) $

END $
EXQUEUE INPUT SACT,GNSUCC,MZINITOK,QMOOO(O,O) $
EXQUEUE INPUT SD67,GNSUCC,MZINITOK,QMOOO(O,O) $
SSTYPEIT INPUT CORAD(QOCD(QICM,TEXT)),7 $

END "GO RECEIVED FROM SD67" $
END "END CASE -3 INIT. FAILURE RESPONSE" $

END "END FOR" $
EXEXIT INPUT 0.0 $
END-PROC RCINSUCC $

A-9

NAVSWC TR 91-388

APPENDIX B

THE DATA-OPERATOR MAP FOR THE COUNTER ABSTRACTION

*** FILE rcinlocd.inc:

0423 VRBL QCNT1 132 S "COUNT OF TASK RESPONSES"$

maps to counter

0424 VRBL QCNT2 132 S "COUNT OF TASK RESPONSES"$

maps to counter

*** FILE rcinsucp.inc:

0296 SET QCNT1 TO 1 $

maps to COUNTERminit

0344 SET QCNT1 TO QCNT1 + 1 $

maps to COUNTER inc

0416 SET QCNT2 TO QCNT2 +1 $

maps to COUNTERinc

0420 SET QCNT2 TO QCNT2 - 1 $

maps to COUNTERdec

0422 IF QCNT2 EQ MZNAVTSK

maps to COUNTER fetch value

0454 SET QCNT1 TO QCNT1 + 1 $

maps to COUNTER inc

0455 IF QCNT1 EQ MZINITSK

maps to COUNTER fetch value

B-1

NAVSWC TR 91-388

DISTRIBUTION

Covies Covies

DEFENSE TECHtNICAL INFORMATION ATTN R DURAN 10
CENTER B RHODE 1

CAMERON STATION J MATHON 1
ALEXANDRIA VA 22304-6145 12 TEKNEKRON SOFTWARE SYSTEMS

INC
ATTN GIFT AND EXCHANGE DIV 4 530 LYTTON AVENUE
LIBRARY OF CONGRESS SUITE 301
WASHINGTON DC 20540 PALO ALTO CA 94301

ATTN CODE 227 (E WALD) 1 INTERNAL DISTRIBUTION:
OFFICE OF NAVAL TECHNOLOGY D4 M LACEY 5
800 N QUINCY STREET E 2
ARLINGTON VA 22217-5000 E231 2

E232 3
CENTER FOR NAVAL ANALYSES E30 1
4401 FORD AVENUE E32 I
POBOX 16268 E342 GIDEP 1
ALEXANDRIA VA 22302-0268 2 F 1

F01 1
ATTN A MESKIN 5 F30 J SWEIGART 1

GSTATHOPOULOS 1 F31 1
ADVANCED TECHNOLOGY AND F31 W LAPOSt TA 1

RESEARCH CORPORATION F31 D YEAGLE 1
4900 SWEITZER LANE G 1
LAUREL MD 20707 G07 F MOORE 1

Gil W LUCAS 1
L JDURAN 1 G40 1
9111 DRAKES BAY CT G42 1
ELK GROVE CA 94306 G42 A FARSAIE 1

H 1
ATTN PROF J GUTTAG 1 H023 G MOORE I
MASSACHUSETTS INSTITUTE OF H32 J HOLMES 1

TECHNOLOGY K I
77 MASS AVENUE K01 J GIAQUINTO 1
CAMBRIDGE MA 02139 KIO 1

K505 J HENDERSON 1
K51 1
K52 W FARR 1

(1)

NAVSWC TR 91-388

DISTRIBUTION (CONT.)

Covies

INTERNAL DISTRIBUTION (CONT):
N 1
N23 1
N23 R BARTHOLOW 5
N30 1
N35 1
N35 H CRISP I
N35 M MASTERS I
N35 M KUCHINSKI 1
R02 R DESAVAGE 1
U 1
U02 1
U04 M STRIPLING 1
U042 1
U042 J BILMANIS 1
U05 1
U051 1
UIO 1

U20 1
U25 M LAANISTO 1
U30 1
U302 P HIWANG 20
U33 1
U33 J ALLENDER 1
U33 D CHOI 1
U33 M EDWARDS 1
U33 K MURPHY I
U33 N IIOANG 1
U33 S HOWELL 1
U33 M JENKINS 1
U33 T MOORE 1
U33 C NGUYEN 1
U33 T PARK 1
U33 H ROTHI 1
U33 M TRINH 1
U33 P WALLENBERGER 1
U34 1
U34 D LAMBERTH 1
U34 M WARNER 1
U40 1

(2)

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
P•J•h•. rep•rting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204, Arlington. VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

127 September 1991 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

IReengineering Using A Data Abstraction Based Specification Language

6. AUTHOR(S)

Randall E. Duran

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Surface Warfare Center (Code U33) NAVSWC TR 91-388
10901 New Hampshire Avenue
Silver Spring, MD 20903-5000

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report describes how a reengineering methodology was developed and applied to convert part of a
system implemented in CMS-2 to a new C implementation. In particular, this methodology used Larch
specifications as an intermediate design representation that was obtained through reverse engineering. The
benefits of using this methodology and ways of improving it, primarily through automation, are suggested.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Reengineeringe Specification Language 72
Reverse Engineering Data Abstraction 16. PRICE CODE
Lairch

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std 1.9-18
298-102

